

> C09-A-102/C09-AA-102/CO9-AEI-102/C09-BM-102/ C09-C-102/C09-CM-102/C09-CH-102/C09-CHPC-102/
> C09-CHPP-102/C09-CHOT-102/C09-CHST-102/ C09-EC-102/C09-EE-102/C09-IT-102/C09-M-102/ C09-MET-102/C09-MNG-102/ C09-PET-102/ CO9-TT-102/C09-RAC-102

3002

BOARD DIPLOMA EXAMINATION, (C-09) MARCH/APRIL-2016
 FIRST YEAR (COMMON) EXAMINATION

ENGINEERING MATHEMATICS-I
Time : 3 hours]
Total Marks : 80

PART—A
$3 \times 10=30$
Instructions : (1) Answer all questions.
(2) Each question carries three marks.
(3) Answers should be brief and straight to the point and shall not exceed five simple sentences.

1. Express $4 x^{2}-4 x+5$ in the form of $A^{2}+B^{2}$.
2. If $p=x-y, q=y-z, r=z-x$, find the value of $2 p-3 q+6 r$ in terms of x, y, z.
3. Resolve $\frac{1}{(x+1)(x+2)}$ into partial fractions.
4. Find the modulus of $\frac{1}{4+3 i}$.
[Contd...
5. If $\tan A=\frac{1}{2}$ and $\tan B=\frac{1}{3}$, show that $A+B=45^{\circ}$.
6. Show that $\frac{\sin 2 \theta}{1-\cos 2 \theta}=\cot \theta$.
7. Find the equation of the polar to the circle $x^{2}+y^{2}+4 x-6 y=0$ with respect to $(-2,5)$.
8. Find the perpendicular distance from the point $(1,2)$ to the line $3 x-4 y+5=0$.
9. Differentiate $\frac{1+\sin x}{1-\sin x}$ w.r.t. x.
10. Find $\operatorname{Lt}_{n \rightarrow \infty} \frac{n^{2}+3 n-4}{n^{2}+4}$.

PART-B

$10 \times 5=50$
Instructions : (1) Answer any five questions.
(2) Each question carries ten marks.
(3) Answers should be comprehensive and the criterion for valuation is the content but not the length of the answer.
11. (a) Show that

$$
\left|\begin{array}{lll}
1 & a & b+c \\
1 & b & c+a \\
1 & c & a+b
\end{array}\right|=0
$$

(b) Solve the equations

$$
\begin{aligned}
& 6 x+y-3 z=5 \\
& x+3 y-2 z=5 \\
& 2 x+y+4 z=8
\end{aligned}
$$

using Cramer's rule.
[Contd...
12. (a) Solve $4 \cos \theta-3 \sec \theta=2 \tan \theta$.
(b) In any $\triangle A B C$, prove that $c \cos ^{2} \frac{A}{2}+a \cos ^{2} \frac{C}{2}=s$.
13. (a) If $A+B+C=180^{\circ}$, prove that

$$
\sin 2 A+\sin 2 B+\sin 2 C=4 \sin A \sin B \sin C
$$

(b) Show that

$$
\tan ^{-1} \frac{3}{4}+\tan ^{-1} \frac{5}{12}=\tan ^{-1} \frac{56}{33}
$$

14. (a) Find the equation of hyperbola with centre at origin, y-axis as the conjugate axis and it is of length 8 passing through the point $(6,4)$.
(b) Find the distance between the points $(2,-1,4)$ and $(-2,1,3)$.
15. (a) Find the vertex, focus, equation of directrix, equation of axis and length of latus rectum of the parabola represented by the equation $(y-3)^{2}=16(x+1)$.
(b) Find the equation of the ellipse which passes through the points $(1,-3)$ and $(-2,2)$ with axes as coordinate axes.
16. (a) Differentiate x^{x} w.r.t. x.
(b) If $y=\sin (\log x)$, show that $x^{2} y_{2}+x y_{1}+y=0$.
17. (a) A wire of length 20 cm is bent to form a rectangle. Find the maximum area the rectangle encloses.
(b) If the percentage error in the side of an equilateral triangle is 3.5%, find the absolute error and percentage error in its area when the side is measured as $6 / \sqrt{ } 3 \mathrm{~cm}$.
18. (a) Find the lengths of tangent, normal, subtangent and subnormal to the curve $x^{2}-y^{2}=9$ at the point $(5,4)$.
(b) Each side of a square increases at the rate of $1.5 \mathrm{~cm} / \mathrm{sec}$. Find the rate at which the areas of the square increases when the side is 12 cm .
