

> C09-A-102/C09-AA-102/C09-AEI-102/C09-BM-102/ C09-C-102/C09-CM-102/C09-CH-102/C09-CHPC-102/ C09-CHPP-102/C09-CHOT-102/C09-CHST-102/ C09-EC-102/C09-EE-102/FW-102/C09-IT-102/ C09-M-102/C09-MET-102/C09-MNG-102/C09PET-102/PKG-102/C09-TT-102/C09-RAC-102

3002

BOARD DIPLOMA EXAMINATION, (C-09)
 APRIL/MAY—2015
 FIRST YEAR (COMMON) EXAMINATION

ENGINEERING MATHEMATICS-I

Time : 3 hours]

Instructions : (1) Answer all questions.
(2) Each question carries three marks.
(3) Answers should be brief and straight to the point and shall not exceed five simple sentences.

1. If $x+\frac{1}{x}=3$, find the value of $x^{3}+\frac{1}{x^{3}}$.
2. Rationalize the denominator of $\frac{\sqrt{7}+\sqrt{3}}{\sqrt{7}-\sqrt{3}}$.
3. If $A+B+C=180^{\circ}$, prove that

$$
\cot A \cot B+\cot B \cot C+\cot C \cot A=1
$$

4. Resolve $\frac{1}{(x-1)(x-2)}$ into partial fractions.
[Contd...
5. Show that

$$
\frac{\cot \alpha+\tan \alpha}{\cot \alpha-\tan \alpha}=\sec 2 \alpha
$$

6. Find the modulus of $\frac{5+12 i}{2+3 i}$.
7. Find the equation of the straight line passing through the point $(3,-4)$ and perpendicular to the line $5 x+3 y-1=0$.
8. Find the equation of the point circle with centre $(-5,2)$.
9. Evaluate :

$$
\lim _{x \rightarrow 0} \frac{\sin 5 x}{\sin 3 x}
$$

10. Differentiate $e^{x} \sin 4 x$.

PART-B
$10 \times 5=50$
Instructions: (1) Answer any five questions.
(2) Each question carries ten marks.
(3) Answers should be comprehensive and the criterion for valuation is the content but not the length of the answer.
11. (a) Using Laplace's expansion, evaluate

$$
\left|\begin{array}{lll}
a & b & c \\
c & a & b \\
b & c & a
\end{array}\right|
$$

(b) Find the adjoint of

$$
\left[\begin{array}{ccc}
7 & 8 & 11 \\
10 & 10 & 10 \\
1 & 4 & 3
\end{array}\right]
$$

12. (a) If $A+B+C=180^{\circ}$, show that

$$
\sin 2 A-\sin 2 B+\sin 2 C=4 \cos A \sin B \cos C
$$

(b) Prove that $\tan ^{-1} \frac{2}{3}+\cot ^{-1} \frac{4}{3}=\tan ^{-1} \frac{17}{6}$.
13. (a) Solve $1-8 \cos \theta+4 \sin ^{2} \theta=0$.
(b) In any $\triangle A B C$, show that $\Sigma \frac{\sin A}{a}=\frac{3}{2 R}$.
14. (a) Find the vertex, focus and directrix of the parabola $(y+3)^{2}=12(x+1)$.
(b) Find the equation of the ellipse which passes through the points $(1,-2)$ and $(3,-1)$ with axes as coordinate axes.
15. (a) Find the equation of the rectangular hyperbola whose focus is $(-1,-3)$ and directrix is $2 x+y+1=0$.
(b) Find the perimeter and centroid of the triangle formed by the points $(4,3,2),(1,-1,3)$ and $(5,4,6)$.
16. (a) Find $\frac{d y}{d x}$, if $x=a(\theta-\sin \theta), y=a(1+\cos \theta)$.
(b) If

$$
y=\sqrt{\sin x+\sqrt{\sin x+\sqrt{\sin x+\cdots \text { to } \infty}}}
$$

show that

$$
\frac{d y}{d x}=\frac{\cos x}{2 y-1}
$$

17. (a) For any curve, show that

$$
\frac{\text { subtangent }}{\text { subnormal }}=\left(\frac{\text { length of tangent }}{\text { length of normal }}\right)^{2}
$$

(b) Each side of a square increases at the rate of $2 \mathrm{~cm} / \mathrm{sec}$. Find the rate at which the area of the square increases when the side is 18 cm . Also find the rate at which perimeter increases.
18. (a) Find the dimensions of a rectangle of maximum area having a perimeter of 24 ft .
(b) If there is an error of 1% in measuring the side of a square plate, find the percentage error in its area.

