3002

BOARD DIPLOMA EXAMINATION, (C-09) JUNE- 2019

DIPLOMA IN AUTOMOBILE ENGINEERING ENGINEERING MATHEMATICS - I (COMMON) FIRST YEAR EXAMINATION

Time: 3 Hours Total Marks: 80

PART - A
$$(10 \times 3 = 30 \text{ Marks})$$

Note 1:Answer all questions and each question carries 3 marks

2:Answers should be brief and straight to the point and shall not exceed 5 simple sentences

- 1. Express $4x^2 4x + 5$ in the form of sum/ difference of squares
- 2. If x = a-b, y = b-c, z = c-a, find the value of 2x-3y-4z.
- 3. Resolve $\frac{1}{(x+1)(x+2)}$ into partial fractions
- 4. Show that $\frac{1-\cos 2\alpha}{\sin 2\alpha} = \tan \alpha$
- 5. Express $1+i\sqrt{3}$ in the modulus amplitude form.
- 6. Show that $\frac{\cos 29^{\circ} + \sin 29^{\circ}}{\cos 29^{\circ} \sin 29^{\circ}} = \tan 74^{\circ}$
- 7. Find the intercepts made by the Straight line 13x + 7y + 11 = 0 on the co-ordinate axis.
- 8. Find the Centre and Radius of the Circle $x^2 + y^2 6x + 4y + 12 = 0$.
- 9. Evaluate Lt $\frac{\sin 47x}{\tan 11x}$
- 10. Differentiate e^{3x}cos 7x w.r.t x

PART - B
$$(5 \times 10 = 50 \text{ Marks})$$

Note 1:Answer any five questions and each question carries 10 marks

* 2:The answers should be comprehensive and the criteria for valuation is the content but not the length of the answer

11. a) If
$$A = \begin{bmatrix} 1 & 2 & -3 \\ 5 & 0 & 2 \\ 1 & -1 & 1 \end{bmatrix}$$
, and $B = \begin{bmatrix} -3 & 2 \\ 1 & -5 \\ 4 & 3 \end{bmatrix}$ find AB.

b) Solve the Equations

$$x + y + 4z = 6$$

$$3x + 2y - 2z = 9$$

$$5x + y + 2z = 13$$
 using Cramer's rule.

12. a. Show that
$$\frac{\sin 17A + \sin 7A}{\cos 17A + \cos 7A} = \tan 12A$$

b. Show that
$$\tan^{-1}\frac{2}{3}+\cot^{-1}\frac{4}{3}=\tan^{-1}\frac{17}{6}$$

www.manaresults.co.in

Page: 1 of 2

Code: C-09 A/AA/AEI/BM/C/CH/CHPP/CHOT/CHPC/CHST/CM/EC/EE/IT/M/MET/MNG/PET/RAC/TT-102

- 13 (a) Solve $4\sin^2\theta 8\cos\theta + 1 = 0$
 - (b) Solve the \triangle ABC if a = 2, A = 30°, C = 30°
- 14. (a) Find the equation of the conic whose focus is at (1, 2) and directrix 2x + y 1 = 0 with eccentricity $\sqrt{3}$.
 - (b) Find the centroid of the triangle formed by the points (1, 1, 1), (1,-1, 1) and (-7,-3,-5).
- 15. (a) Find the equation of parabola whose focus is (-1,1) and directrix x + y + 1 = 0.
 - (b) Find the centre, vertices, eccentricity, foci, equations of directrices and lengths of latusrectum of the ellipses represented by the equation $4x^2 + 9y = 36$.
- 16. a) Differentiate x^{logx} w.r.t x. b) If x = a (1 - Cost), y = a (t - Sint), find $\frac{dy}{dx}$
- 17. (a) Find the equations of the tangent and normal to the curve $y^2 2y = x$ at the point (3, 3).
 - (b) Each side of a square increases at the rate of 1.5cm/sec. Find the rate at which the area of the square increases when the side is 12cm.
- 18. (a) Show that the semi vertical angles of cone of maximum volume and of given slant height is $Tan^{-1}(\sqrt{2})$.
 - (b) If an error of 0.02 cm is made in measuring the side 10cm of a square, find the approximate error made in calculating its area.

- xxx -