
 C09-A-102/C09-AA-102/C09-AEI-102/C09-BM-102/ C09-C-102/C09-CM-102 / C09-CH-102/C09-CHPC-102 / C09-CHPP-102/C09-CHOT-102/C09-CHST-102/C09-EC-102 /C09-EE-102/C09-IT-102/C09-M-102/C09-MET-102/ C09-MNG/C09-PET-102/C09-TT-102 / C09-RAC-102

3002

BOARD DIPLOMA EXAMINATION, (C-09) OCT/NOV—2015
 FIRST YEAR (COMMON) EXAMINATION

ENGINEERING MATHEMATICS—I

Time : 3 hours]

PART—A
$3 \times 10=30$

Instructions : (1) Answer all questions.
(2) Each question carries three marks.

1. Find the quotient and remainder, when $6 x^{3}+19 x^{2}-x-29$ is divided by $2 x+3$.
2. If $x+\frac{1}{x}=3$, then find the value of $x^{2}+\frac{1}{x^{2}}$.
3. Resolve $\frac{3 x-1}{(x-2)(x-3)}$ into patial fractions.
4. Given that $\tan A=\frac{5}{6}$ and $\tan B=\frac{1}{11}$, prove that $A+B=\frac{\pi}{4}$.
[Contd...
5. Prove that

$$
\frac{1+\cos 2 \theta}{\sin 2 \theta}=\cot \theta
$$

6. If $z=3+4 i$, then calculate the value of $z \bar{z}$ and $z+\bar{z}$.
7. Find the equation of the line passing through the point $(3,-4)$ and perpendicular to the line $5 x+3 y-1=0$.
8. Find the equation of the circle with centre at $(2,-3)$ and radius 4.
9. Find :

$$
\lim _{x \rightarrow 4} \frac{x-4}{x^{3}-64}
$$

10. Find $\frac{d}{d x}$, if $x=a \cos \theta$ and $y=b \sin \theta$

PART—B

$10 \times 5=50$

Instructions : (1) Answer any five questions.
(2) Each question carries ten marks.
11. (a) Solve the equations

$$
\begin{aligned}
3 x+y+2 z & =3 \\
2 x-3 y-z & =-3 \\
x+2 y+z & =4
\end{aligned}
$$

using Cramer's rule.
(b) Prove that

$$
\left|\begin{array}{ccc}
a & b & c \\
a-b & b-c & c-a \\
b+c & c+a & a+b
\end{array}\right|=a^{3}+b^{3}+c^{3}-3 a b c
$$

[Contd...
12. (a) In $\triangle A B C$, prove that

$$
\sin 2 A-\sin 2 B-\sin 2 C=-4 \sin A \cdot \cos B \cdot \cos C
$$

(b) Prove that

$$
\tan ^{-1}\left(\frac{1}{3}\right)+\cot ^{-1}(7)=\tan ^{-1}\left(\frac{1}{2}\right)
$$

13. (a) Solve : $4+\cos \theta-6 \sin ^{2} \theta=0$
(b) Solve the $\triangle A B C$ with $a=2, c=\sqrt{6}$ and $C=60^{\circ}$.
14. (a) Find the equation of the parabola with focus $(3,-4)$ and vertex $(3,-2)$.
(b) Find the eccentricity, foci, length of latus rectum and directrices of the ellipse $25 x^{2}+16 y^{2}=1600$.
15. (a) Find the equation of rectangular hyperbola whose focus is $(2,3)$ and directrix is the line $3 x+4 y=5$.
(b) Find the perimeter and centroid of the triangle formed by the points $(2,3,7),(-4,1,7)$ and $(-5,-11,3)$.
16. (a) Find $\frac{d y}{d x}$, if

$$
y=\sin x^{\sin x^{\sin x^{\sin x \cdots \infty}}}
$$

(b) If

$$
u=\tan ^{-1}\left(\frac{x^{2}+y^{2}}{x+y}\right)
$$

prove that $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=\frac{1}{2} \sin 2 u$
[Contd...
17. (a) Find the angle between the curves $x^{2}+y^{2}=8$ and $x^{2}=2 y$.
(b) The displacement(s) of a particle is given at any time t by the relation $s=2 t^{3}-15 t^{2}+36 t-70$. Find its (i) initial velocity, (ii) time when velocity is zero.
18. (a) Find the two positive numbers x and y such that $x+y=35$ and $x^{2} y^{5}$ is maximum.
(b) If the radius of a spherical balloon is increased by $0 \cdot 2 \%$, find the approximate percentage increase in volume.

