

C09-A-102/C09-AA-102/C09-AEI-102/C09-BM-102/ C09-C-102/C09-CM-102/C09-CH-102/C09-CHPC-102/

C09-CHPP-102/C09-CHOT-102/C09-CHST-102/ C09-EC-102/C09-EE-102/C09-IT-102/C09-M-102/

C09-MET-102/C09-MNG-102/C09-PET-102/ C09-TT-102/C09-RAC-102

3002

BOARD DIPLOMA EXAMINATION, (C-09)

> OCT/NOV—2016

FIRST YEAR (COMMON) EXAMINATION
ENGINEERING MATHEMATICS-I
Time : 3 hours]
[Total Marks : 80
PART—A
$3 \times 10=30$
Instructions : (1) Answer all questions.
(2) Each question carries three marks.
(3) Answer should be brief and straight to the point and shall not exceed five simple sentences.

1. Simplify $m-[n-[2 n-(3 n-(5 n-m))]]-3 n$ by removing the brackets.
2. Find the quotient and remainder when $2 x+3$ is divided by $5 x-7$.
3. Resolve

$$
\frac{7 x-11}{(x-1)(x-2)}
$$

into partial fractions.
4. Express $\sqrt{3}-i$ in the modulus amplitude form.
[Contd...
5. Prove that $\cos \theta \cos (60+\theta) \cos (60-\theta)=\frac{1}{4} \cos 3 \theta$.
6. If $A+B+C=180^{\circ}$, show that

$$
\tan \frac{A}{2} \tan \frac{B}{2}+\tan \frac{B}{2} \tan \frac{C}{2}+\tan \frac{C}{2} \tan \frac{A}{2}=1
$$

7. Find the perpendicular distance from the point $(5,-7)$ to the line $3 x-5 y+7=0$.
8. Find the centre and radius of the circle

$$
25 x^{2}+25 y^{2}-20 x+30 y=12
$$

9. Find the derivative of $x^{3} \log x$ w.r.t. x.
10. Find

$$
\operatorname{Lt}_{\theta \rightarrow 0} \frac{\tan a \theta}{\sin b \theta}
$$

PART-B
Instructions : (1) Answer any five questions.
(2) Each question carries ten marks.
(3) Answers should be comprehensive and the criterion for valuation is the content but not the length of the answer.
11. (a) If

$$
A=\left[\begin{array}{ccc}
2 & 0 & 1 \\
2 & 1 & 3 \\
1 & -1 & 0
\end{array}\right]
$$

Find A^{2}.
(b) Solve the equations

$$
\begin{aligned}
x+2 y+3 z & =6 \\
2 x+4 y+z & =7 \\
3 x+2 y+9 z & =14
\end{aligned}
$$

using Cramer's rule.
[Contd...
12. (a) Solve $2 \cos ^{2} \theta-3 \cos \theta+1=0$.
(b) In any $\triangle A B C$, show that $\sum \frac{\sin A}{a}=\frac{3}{2 R}$.
13. (a) Show that

$$
\frac{\sin 17 A+\sin 7 A}{\cos 17 A+\cos 7 A}=\tan 12 A
$$

(b) Show that

$$
\tan ^{-1} \frac{2}{3}+\cot ^{-1} \frac{4}{3}=\tan ^{-1} \frac{17}{6}
$$

14. (a) Find the equation of parabola whose axis is parallel to X-axis and passing through the points $(-2,1),(1,2)$ and $(-1,3)$.
(b) Find the centre, vertices, eccentricity, foci, equations of directrices and lengths of latus rectum of the ellipses represented by the equation $4 x^{2}+9 y^{2}=36$.
15. (a) Find the equation to the rectangular hyperbola with focus $(3,4)$ and directrix $4 x-3 y+1=0$.
(b) Find the centroid of the tetrahedron whose vertices are $(-9,2,4),(-3,1,2),(4,6,7),(8,2,0)$.
16. (a) If

$$
y=\frac{(x-a)(x-b)}{(x+a)(x+b)}
$$

Find $\frac{d y}{d x}$.
(b) If

$$
u=\log (x+y+z)
$$

Show that $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}+z \frac{\partial u}{\partial z}=1$.
17. (a) Find the volume of the largest right circular cone that can be inscribed in a sphere of radius R.
(b) Time of oscillation of a simple pendulum of variable length l is given by $T=2 \pi \sqrt{\frac{l}{g}}$. If the length is increased by 4%, find the approximate percentage increase in its time of oscillation where g is constant.
[Contd...
18. (a) Find the angle between the curves $y^{2}=4 x$ and $x=y-1$ at any point of intersection.
(b) A circular plate of metal expands by heat so that its radius increases at the rate of $0.01 \mathrm{~cm} / \mathrm{sec}$. At what rate is the surface increasing when the radius is 2 cm ?

