

> C09-A-102/C09-AA-102/CO9-AEI-102/C09-BM-102/ C09-C-102/C09-CM-102/C09-CH-102/C09-CHPC-102/
> C09-CHPP-102/C09-CHOT-102/C09-CHST-102/ C09-EC-102/C09-EE-102/C09-IT-102/C09-M-102/ C09-MET-102/C09-MNG-102/C09-PET-102/ C09-TT-102/C09-RAC-102

3002

BOARD DIPLOMA EXAMINATION, (C-09) OCT/NOV-2017
 FIRST YEAR (COMMON) EXAMINATION

ENGINEERING MATHEMATICS-I
Time : 3 hours]
Total Marks : 80

PART—A

$3 \times 10=30$
Instructions : (1) Answer all questions.
(2) Each question carries three marks.

1. Express of $3+2 x-x^{2}$ in the form of $A^{2}+B^{2}$
2. If $p=2 a-3 b, q=3 b-4 c . r=5 a-2 b$, Find $3 p+2 q-5 r$.
3. Resolve $\frac{4}{(x-2)(x-5)}$ into partial fractions.
4. If $A+B+C=90^{\circ}$, prove that $\cot A+\cot B+\cot C=\cot A \cot B \cot C$.
5. Find the Modulus of $\frac{5+l 2 i}{2+3 i}$
6. If $\sin A=\frac{4}{5}$, Find $\cos 2 A$ and $\sin 2 A$
[Contd...
7. Find the Equation of the Circle with $(-5,1)$ and $(3,-7)$ as end points of a diameter.
8. Find the angle between the straight lines $x+5 y+7=0$ and $x+3 y-18=0$.
9. Evalute $\underset{x \rightarrow 1}{\operatorname{Lt}} \frac{x^{2}-3 x+2}{x^{2}-4 x+3}$
10. Differentiate $\frac{1+\sin x}{1-\sin x}$ w.r.t.x.

> PART—B
$10 \times 5=50$
Instructions : (1) Answer any five questions.
(2) Each question carries ten marks.
11. (a) Show that

$$
\left(\begin{array}{ccc}
1 & 1 & 1 \\
1 & 1+a & b \\
1 & 1 & 1+b
\end{array}\right)
$$

(b) Find the inverse of the matrix

$$
\left[\begin{array}{ccc}
1 & -1 & 1 \\
4 & 1 & 0 \\
8 & 1 & 1
\end{array}\right]
$$

12. (a) Solve $\operatorname{Tan}^{2} \theta-(1+\sqrt{3}) \operatorname{Tan} \theta \mid \sqrt{3}=0$
(b) Solve the $\triangle A B C$ if $\mathrm{a}=2, c=\sqrt{3}+1, B=60^{\circ}$.
13. (a) If

$$
\mathrm{A}+\mathrm{B}+\mathrm{C}=180^{\circ} \quad \text { prove }
$$

that
$\sin 2 A+\sin 2 B+\sin 2 C=4 \sin A \sin B \sin C$.
(b) Show that $\tan ^{-1} \frac{3}{4}+\tan ^{-1} \frac{5}{12}=\tan ^{-1} \frac{56}{33}$
[Contd...
14. (a) Find the equation of parabola whose focus is $(-1,1)$ and directrix $x+y+1=0$
(b) Find the centre, vertices, eccentricitym, foci, equations of directries and lengths of latusrectum of the of the ellipses represented by the equation $16 x^{2}+9 y^{2}=144$
15. (a) Find the centre, length of the Transverse axis, equations of the axes, of the hyperbola represented by the equation $4 x^{2}-25 y^{2}=100$.
(b) Find the mid point of the line joining the points $(7,2,9)$ and $9,-6,-3)$.
16. (a) Differentiate $\operatorname{Tan}^{-1}\left[\frac{3 x-x^{3}}{1-3 x^{2}}\right]$ with respect to $\sin ^{-1}\left[\frac{2 x}{1+x^{2}}\right]$
(b) If $u=\sin ^{-1}\left(\frac{x^{2}+y^{2}}{1-3 x^{2}}\right)$, Show that $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=$ Tanu
17. (a) Find the Equations of Tangent and normal to the curve $y=x^{2}-2 x-3$ at the point $(0,-3)$.
(b) A ladder of 5 m long is placed against a vertical wall. Foot of the ladder is slipping away from the wall at rate of $5 \mathrm{~cm} / \mathrm{sec}$. Find the rate of descending of its top if the foot of the ladder is 3 m away from the wall.
18. (a) Find the maximum and minimum values of the function $y=\sin x$ in the interval $[0.2 \pi]$.
(b) Time of oscillation of a simple pendulum of variable length ' I ' is given by $T=2 \pi \sqrt{\frac{1}{g}}$.

If the length is increased by 1%, find approximate percentage increase in its time of oscillation where ' g ' is constant.

