

C09-A-103/C09-AA-103/C09-AEI-103/C09-BM-103/
 C09-C-103/C09-CM-103/C09-CH-103/ C09-CHPP-103/C09-CHPC-103/C09-CHOT-103/ C09-CHST-103/C09-EC-103/C09-EE-103/ C09-IT-103/C09-M-103/C09-MET-103/C09-MNG-103/ C09-PET-103/C09-TT-103/C09-RAC-103

 3003

 3003}

BOARD DIPLOMA EXAMINATION, (C-09)
 OCT/NOV-2017
 FIRST YEAR (COMMON) EXAMINATION

ENGINEERING PHYSICS

Time : 3 hours]
[Total Marks : 80

PART—A
$3 \times 10=30$

Instructions : (1) Answer all questions.
(2) Each question carries three marks.
(3) Answers should be brief and straight to the point and shall not exceed five simple sentences.

1. Write the dimensional formulae for the following :
(a) Momentum
(b) Density
(c) Work
2. Define equal vector, negative vector and unit vector.
3. A body is allowed to fall freely from a height 1960 m . Find the time taken to reach the ground.
www.ManaResults.co.in
[Contd...
4. State the laws of static friction.
5. The time period of a simple pendulum is 2 seconds. If its length is increased 4 times, find its time period.
6. Write the statement of Boyle's law. If $P_{1} V_{1}$ and $P_{2} V_{2}$ are pressures and volumes, write the relation between them using Boyle's law.
7. Write any two methods of controlling noise pollution in urban areas.
8. Define surface tension and explain any one example.
9. Two north poles of pole strengths 1 A-m each are separated by a distance of 1 m in air. Calculate the force of repulsion between them.
10. Write any three applications of optical fibers.

PART—B
$10 \times 5=50$

Instructions : (1) Answer any five questions.
(2) Each question carries ten marks.
(3) Answers should be comprehensive and the criterion for valuation is the content but not the length of the answer.
11. (a) Define scalar product of two vectors.
(b) Explain potential energy on the basis of scalar product. 3
(c) Find the work done in moving an object through a displacement of $\overrightarrow{2 i}+\overrightarrow{3 j}+5 \vec{k}$ when the applied force is $\overrightarrow{5 i}+4 \vec{j}+\overrightarrow{2 k}$.
12. (a) Derive an expression for the magnitude and direction of resultant velocity of a body after any instant t in case of an oblique projection.

7
(b) The range of a projectile is twice its maximum height. Its velocity of projection is $10 \mathrm{~m} / \mathrm{s}$. What is the range of the projectile? (Take $g=10 \mathrm{~m} / \mathrm{s}^{2}$)
www. ManaResults.co.in
[Contd...
13. (a) Define potential energy. Give its units and dimensional
formula.
(b) Derive an expression for potential energy.
(c) A body of mass 5 kg is raised to a height of 10 m is 5 minutes. Find the potential energy and power required.
14. (a) Define time period of a particle in SHM.
(b) Derive the expression for time period of a particle in SHM.
(c) A particle moving in SHM has a velocity of $2 \mathrm{~m} / \mathrm{s}$ when passing through center of its path and its time period is $3 \cdot 142 \mathrm{~s}$. Find its amplitude.
15. (a) Distinguish between isothermal and adiabatic processes.6
(b) State the laws of thermodynamics. 4
16. (a) Explain Doppler effect in sound. Write any three applications of Doppler effect.
(b) A train at the outer signal of railway station blows a whistle of frequency 400 Hz in air. What is the frequency of the whistle for a platform observer when the train (i) approaches the platform with a speed of $10 \mathrm{~m} / \mathrm{s}$ and (ii) recedes from the platform with a speed of $10 \mathrm{~m} / \mathrm{s}$. (Velocity of sound in air $=340 \mathrm{~m} / \mathrm{s}$)
17. (a) State Hooke's law.
(b) Derive an expression for Young's modulus.
(c) Calculate the force required to increase the length of a wire of cross-sectional area $10^{-6} \mathrm{~m}^{2}$ by 50%, if the Young's modulus of the material of wire is $90 \times 10^{9} \mathrm{~Pa}$.
18. (a) Derive an expression for the specific resistance of the material of a conductor using meter bridge.
(b) State and explain Coulomb's inverse square law of magnetism.

