

C09-A-302/C09-AA-302/C09-AEI-302/C09-C-302/ C09-CM-302/C09-EC-302/C09-EE-302/C09-CH-302/ C09-CHPP-302/C09-CHPC-302/C09-CHOT-302/ C09-CHST-302/C09-IT-302/C09-M-302/C09-MET-302/

C09-MNG-302/C09-PET-302/C09-TT-302/C09-RAC-302

3202

BOARD DIPLOMA EXAMINATION, (C-09) MARCH/APRIL—2016 THIRD SEMESTER (COMMON) EXAMINATION

ENGINEERING MATHEMATICS—II

Time: 3 hours [Total Marks: 80

PART—A

 $3 \times 10 = 30$

Instructions: (1) Answer **all** questions.

- (2) Each question carries **three** marks.
- **1**. Evaluate $x \cos x dx$.
- **2.** Evaluate $x \cos x^2 dx$.
- **3.** Evaluate $\frac{e^{m \tan^{-1} x}}{1 + x^2} dx.$
- **4.** Evaluate $\frac{1}{1 \cos x} dx$.

5. Evaluate
$$\frac{dx}{\sqrt{x^2 - 9}}$$
.

- **6.** Find the mean value of the function between f(x) x^2 4x 3 values of x, where the expression vanishes.
- **7.** Evaluate $xe^x dx$.
- **8.** Solve $\frac{d^2y}{dx^2}$ $\frac{dy}{dx}$ 12y 0.
- **9.** Find the differential equation whose solution is $y Ae^x Be^{2x}$, where A, B are arbitrary constants.
- **10.** Solve $\frac{dy}{dx}$ e^y e^yx^2 .

PART—B

 $10 \times 5 = 50$

Instructions: (1) Answer any five questions.

- (2) Each question carries ten marks.
- **11.** (a) Evaluate $\frac{2x + 3}{3x^2 + 14 + 5} dx$.
 - (b) Evaluate $x^3 \log x \ dx$.

*

- **12.** (a) Evaluate $\cos^3 \sin^4 d$.
 - (b) Evaluate $\cos 2x \cos x \, dx$.
- **13.** (a) Find the volume of the solid formed by revolving the area enclosed by the curve \sqrt{x} \sqrt{y} 1, x 0, y 0 about y-axis.
 - (b) Find the RMS value of $\sqrt{27} + 4x^2$ between x = 0, x = 3.

- **14.** Find the area bounded by the curve $16x^2$ $25y^2$ 400 using the method of integration.
- **15.** (a) Solve $(D^2 ext{ } 6D ext{ } 9)y ext{ } \cos 3x.$
 - (b) Solve $(D^2 \ 5D \ 6)y \ x$.
- **16.** (a) Solve $\frac{dy}{dx} = \frac{2y}{x} = 3x$.
 - (b) Solve $(4D^2 \ 4D \ 3)y \ e^{2x}$.
- **17.** Solve $x^2 dy (y^2 xy) dx 0$.
- **18.** (a) A river is 80 feet wide and depth d (in feet) at a distance x from one bank is given by the following table :

х	0	10	20	30	40	50	60	70	80
d	0	4	7	9	12	15	14	8	3

Find the cross-section of the river using Simpson's rule.

(b) Solve
$$\frac{dy}{dx} = \frac{x + y + 1}{x + y}$$
.

 $\star\star\star$