

C09-A-302/C09-AA-302/C09-AEI-302/C09-C-302/ C09-CM-302/C09-EC-302/C09-EE-302/C09-CH-302/ C09-CHPP-302/C09-CHPC-302/C09-CHOT-302/ C09-CHST-302/C09-IT-302/C09-M-302/C09-MET-302/

C09-MNG-302/C09-PET-302/C09-TT-302/C09-RAC-302

3202

BOARD DIPLOMA EXAMINATION, (C-09) OCT/NOV-2016 THIRD SEMESTER (COMMON) EXAMINATION

ENGINEERING MATHEMATICS—II

Time: 3 hours | [Total Marks: 80

PART—A

 $3 \times 10 = 30$

Instructions: (1) Answer **all** questions.

- (2) Each question carries three marks.
- (3) Answers should be brief and straight to the point and shall not exceed *five* simple sentences.
- 1. Evaluate $x^3 \cos(x^4) dx$.
- **2.** Evaluate $\frac{1}{x(\log x)^2} dx$.
- **3.** Evaluate $xe^{-x}dx$.
- **4.** Evaluate $\frac{1}{\cos^2 x \sin^2 x} dx.$

5. Evaluate
$$\frac{*dx}{\sqrt{x^2 \ 9}}$$
.

- **6.** Evaluate $\log x \, dx$.
- 7. Evaluate $\int_{0}^{3} \frac{\cos x}{4 + 3\sin x} dx.$
- **8.** Find the particular integral of $(D^2 \ 4D \ 4)y \ e^{2x}$.
- **9.** Form the differential equation of family of curves $y + A \cos x + B \sin x$ where A and B are arbitrary constants.
- **10.** Solve $x(1 y^2) dx y(1 x^2) dy 0$.

PART—B

10×5=50

Instructions: (1) Answer any **five** questions.

- (2) Each question carries ten marks.
- (3) Answers should be comprehensive and the criterion for valuation is the content but not the length of the answer.
- **11.** (a) Evaluate $\frac{1}{x^2 + 2x + 10} dx$.
 - (b) Evaluate $\frac{x^4}{x^2} \frac{1}{1} dx$.
- **12.** (a) Evaluate $\frac{1}{x^2 + 8x + 20} dx$.
 - (b) Evaluate $\frac{1}{2 \cos x} dx$.
- **13.** (a) Find the volume of the solid formed by revolving the area enclosed by the curve \sqrt{x} \sqrt{y} \sqrt{a} in the first quadrant about y-axis.
 - (b) Find the RMS value of xe^x between 0 x 1.

/3202

2

[Contd...

$$\int_{4}^{4} \log \frac{1 \sin x}{1 \sin x} \, dx$$

- (b) Find the area bounded by the parabola $y^2 2x$ and the straight line 4x y = 1 0.
- **15.** (a) Solve $D^2 + 1 + y + 1 + \cos 3x$.
 - (b) Solve $D^2 \ 2D \ 1 \ y \ 2x^2$.

$$\frac{dy}{dx}$$
 $y \sec^2 x \tan x \sec^2 x$

$$(D^2 \ D \ 12)y \ e^{4x}$$

$$(x^2 \quad y^2)\frac{dy}{dx} \quad xy$$

$$\int_{1}^{2} \frac{1}{x} dx$$

approximately by dividing the interval [1, 2] into 10 equal parts using Simpson's rule.

(b) Solve $(\cos x + x \cos y) dy + (\sin y + y \sin x) dx = 0$.

* * *

/3202 3