

3202

BOARD DIPLOMA EXAMINATION, (C-09) OCT/NOV—2018
THIRD SEMESTER (COMMON) EXAMINATION
ENGINEERING MATHEMATICS-II

Time : 3 hours]
Total Marks : 80

PART—A
$3 \times 10=30$
Instructions : (1) Answer all questions.
(2) Each question carries three marks.
(3) Answers should be brief and straight to the point and shall not exceed five simple sentences.

1. Evaluate $\int(3 x-5)^{7} d x$.
2. Evaluate $\int x e^{3 x} d x$.
3. Evaluate $\int \frac{\sin ^{-1} x}{\sqrt{1-x^{2}}} d x$.
[Contd...
4. Evaluate $\int\left(\sec ^{2} x-e^{x}+\sin x\right) d x$.
5. Evaluate $\int \frac{d x}{4-8 x^{2}}$
6. Evaluate $\int_{1 / \sqrt{2}}^{\sqrt{3} / 2} \frac{1}{\sqrt{1-x^{2}}} d x$.
7. Evaluate $\int \frac{e^{x}}{e^{x}-1} d x$.
8. Find the particular integral of $\left(D^{2}-5 D+6\right) y=e^{3 x}$.
9. Form the differential equation of family of curves $y=A \cos 5 x+B \sin 5 x$, where A and B are arbitrary constants.
10. Solve $\left(e^{x}+1\right) \sin y d y+e^{x} \cos y d x=0$.

PART-B

$10 \times 5=50$
Instructions : (1) Answer any five questions.
(2) Each question carries ten marks.
(3) The answer should be comprehensive and the criterion for valuation is the content but not the length of the answer.
11. (a) Evaluate $\int \frac{x+2}{x^{2}+2 x-3} d x$.
(b) Evaluate $\int(\log x)^{2} d x$.
12. (a) Evaluate $\int \cos 3 x \cdot \sin 2 x d x$.
(b) Evaluate $\int \cos ^{10} \theta \cdot \sin ^{3} \theta d \theta$.
13. Find the area bounded by the curve $4 x^{2}+9 y^{2}=36$ using the method of integration.
[Contd...
14. (a) Find the volume of the solid obtained by revolving the ellipse $25 x^{2}+16 y^{2}=400$ about its minor axis.
(b) Find the RMS value of $x e^{x}$ between $x=1$ to $x=3$.
15. (a) Solve $\frac{d y}{d x}+\frac{y}{x}=x$.
(b) Solve $\left(D^{2}-D-6\right) y=2+e^{2 x}$.
16. Solve $\left(x^{3}+3 x y^{2}\right) d x+\left(3 x^{2} y+y^{3}\right) d y=0$.
17. (a) Solve $\left(D^{2}+9\right) y=\cos 2 x$.
(b) Solve $\left(D^{2}+D+1\right) y=1+x$.
18. (a) Evaluate $\int_{4}^{8} \frac{1}{x} d x$ approximately by dividing the interval [4, 8] into 4 equal parts using trapezoidal rule.
(b) Solve $\frac{d y}{d x}=\frac{x+y}{x-y}$.

