

C09-M-304/CHST-304

3248

BOARD DIPLOMA EXAMINATION, (C-09)
 APRIL/MAY-2015
 DME-THIRD SEMESTER EXAMINATION

ELECTRICAL ENGINEERING AND BASIC ELECTRONICS

Time : 3 hours]
PART—A

$$
3 \times 10=30
$$

Instructions : (1) Answer all questions.
(2) Each question carries three marks.
(3) Answers should be brief and straight to the point and shall not exceed five simple sentences.

1. Define permeability and write its unit.
2. Define mutual inductance and also mention its unit.
3. Distinguish between power and energy.
4. State any three applications of a DC shunt motor.
5. List the types of self-excited DC generator.
6. Define instantaneous value of an alternating quantity and write its equations.
7. State how the direction of rotation of a 3-phase induction motor can be reversed.
8. State the indications of a fully charged lead acid battery.
9. Distinguish between intrinsic and extrinsic semiconductors.
10. Draw the connection diagram of single-phase energy meter with load.
[Contd...

PART-B
Instructions : (1) Answer any five questions.
(2) Each question carries ten marks.
(3) Answers should be comprehensive and the criterion for valuation is the content but not the length of the answer.
11. A conductor is moving at 90° in a magnetic field of flux density $1.4 \mathrm{~Wb} / \mathrm{m}^{2}$. The length of the conductor is 125 cm and the velocity of conductor is $2.3 \mathrm{~m} / \mathrm{sec}$. Find the e.m.f. produced in the conductor. Also find e.m.f., when velocity is $2.5 \mathrm{~m} / \mathrm{sec}$.
12. A 400-V DC short shunt compound generator is delivering a load of 50 A. Its armature, series and shunt field resistances are $0 \cdot 1 \Omega, 0 \cdot 15 \Omega$ and 163Ω. Calculate the generated e.m.f.
13. A 1-phase supply of $230 \mathrm{~V}, 50 \mathrm{~Hz}$ is connected across a circuit consisting of 15Ω resistance in series with $120 \mu \mathrm{~F}$ capacitance. Find-
(a) reactance;
(b) impedance;
(c) current;
(d) voltage drop across resistance;
(e) voltage drop across capacitance.
14. (a) Explain the working principle of transformer.
(b) Explain the constructional details of alternator.
15. (a) Explain the operation of LED.
(b) Explain the operation of zener diode.
16. Explain construction and working principle of dynamometer type wattmeter with a neat sketch.
17. (a) Define (i) permittivity and (ii) capacitance and mention their units.
(b) Draw schematic diagram of a DC series motor and state the relationship between voltages and currents.
18. (a) Draw the schematic representation of a capacitor starts singlephase induction motor.
(b) Explain the constant current method of charging the batteries.

