4002

BOARD DI PLOMA EXAMI NATI ON, (C-14)
 MARCH / APRI L-2019
 FIRST YEAR (COMMON) EXAMI NATI ON
 ENGINEERING MATHEMATICS-I

Time: 3 Hours]
[Max.Marks: 80

PART-A

$$
10 \times 3=30 M
$$

Instructions:1) Answer all questions and each question carries 3 marks.
2) Answers should be brief and straight to the point and shall not exceed five simple sentences.

1) Resolve $\frac{3 x-2}{(x-1)(x-2)}$ into partial fractions.
2) If $A=\left(\begin{array}{cc}1 & -2 \\ -1 & 5 \\ 3 & 1\end{array}\right)$ and $B=\left(\begin{array}{cc}1 & 2 \\ 3 & -1\end{array}\right)$ then compute $A B$ and $B A$.
3) If w is cube root of unity. Show that $\left|\begin{array}{ccc}1 & w^{2} & w \\ w & 1 & w^{2} \\ w^{2} & w & 1\end{array}\right|=0$
4) If $A+B=135^{\circ}$ show that $(1+\cot A)(1+\cot B)=2$.
5) Prove that $\frac{\sin 2 \theta}{1-\cos 2 \theta}=\cot \theta$

WWW . MANARESULTS.CO.IN
6) Express the complex number $\frac{(2+i)(1-i)}{(1+i)}$ in the form of $a+i b$.
7) Find the equation of the line perpendicular to the line $5 x+3 y-1=0$ and passing through the point $(3,-4)$.
8) Find the center and radius of the circle whose equation is $x^{2}+y^{2}-8 x-6 y-24=0$
9) Evaluate $\lim _{x \rightarrow 0} \frac{\sqrt{1+x+x^{2}}-1}{x}$.
10) Find the derivative of $3 \tan x-4 \log x-7 x^{3}+9$ with respect to x.

PART-B
$5 \times 10=50 \mathrm{M}$
Instructions: 1) Answer any five questions
2) Each question carries 10 marks.
3) The answers should be comprehensive and the criteria for valuation is the content but not the length of the answer.
11) (a)Show that $\left|\begin{array}{ccc}b+c & a & a \\ b & c+a & b \\ c & c & a+b\end{array}\right|=4 a b c$
(b) Solve the equations $x+y+3 z=6, x-y+2 z=2$ and $2 x-y+3 z=9$ by matrix inversion method.
12) (a) If $A+B+C=180^{\circ}$ prove that $\sin 2 A+\sin 2 B+\sin 2 C=4 \sin A \cdot \sin B \cdot \sin C$.
(b) Show that $2 \tan ^{-1}\left(\frac{1}{3}\right)+\tan ^{-1}\left(\frac{1}{7}\right)=\frac{\pi}{4}$.
13) (a) Solve $2 \sin ^{2} \theta-\sin \theta-1=0$.
(b) In any $\Delta^{\mathrm{le}} A B C$, show that $\sum \frac{\mathrm{a}^{2} \sin (B-C)}{\sin \mathrm{A}}=0$.
14) (a) Find the equation of the parabola whose directrix is parallel to y-axis and passing through the points $(-1,2),(2,0)$ and $(0,4)$.
(b) Find the equation of the ellipse with axes as co-ordinate axes and whostallatlat rectumlis af Peingth ifland distancebetween the foci is 10.
15) (a) Find the derivative of $\tan ^{-1}\left(\frac{2 x}{3 x+4}\right)$ with respect to x.
(b) Find $\frac{d y}{d x}$, if $y=(\sin x)^{\log x}$.
16) (a) Find $\frac{d y}{d x}$, if $\sin y=x \sin (a+y)$
(b) If $u=x^{2} y+y^{2} z+z^{2} x$, then show that $\frac{\partial u}{\partial x}+\frac{\partial u}{\partial y}+\frac{\partial u}{\partial z}=(x+y+z)^{2}$.
17) (a) Find the equation of tangnt and normal to the curve $y^{2}=5 x$ at $(5,5)$
(b) The side of an equilateral triangle is increasing at the rate of $8 \mathrm{~cm} . /$ sec . Find the rate of change of its area when the side is 6 cm .
18) (a) Find the maximum and minimum values of the function $2 x^{3}-6 x^{2}-18 x+21$.
(b) Find the approximate value of $\sqrt[4]{624}$ using the concept of errors and approximations.

