# C14-A-AA-AEI-BM-C-CM-CH-CHPC-CHPP-CHOT-CHST-EC-EE-IT-M-MET-MNG-PET-TT-RAC-PCT-102

## 4002

# BOARD DIPLOMA EXAMINATION, (C-14) MARCH/APRIL—2021

## **DBME - FIRST YEAR (COMMON) EXAMINATION**

ENGINEERING MATHEMATICS - I

Time: 3 hours [ Total Marks: 80

#### PART—A

 $4 \times 5 = 20$ 

**Instructions:** (1) Answer any **five** questions.

- (2) Each question carries four marks.
- 1. Resolve  $\frac{1}{(x-1)(x-3)}$  into partial tractions.
- **2.** If  $A = \begin{bmatrix} 0 & -1 \\ 3 & 1 \end{bmatrix}$ ;  $B = \begin{bmatrix} 2 & 0 \\ 3 & 1 \end{bmatrix}$ , find 2A + B.
- 3. Find the value of  $\begin{vmatrix} 1 & 0 & 1 \\ 2 & 1 & 0 \\ 1 & -1 & 1 \end{vmatrix}$ .
- **4.** Show that  $\tan(45^{\circ} + A) \tan(45^{\circ} A) = 1$ .

/4002 1 [ Contd...

5. Show that 
$$\frac{\sin 2\theta}{1 + \cos 2\theta} = \tan \theta$$
.

- **6.** Find the additive inverse of (2+3i).
- 7. Find the equation of the straight line passing through the points (1, 1) and (0, 2).
- **8.** Find the equation of the circle whose centre is (2, 5) and radius is 2 units.
- **9.** Evaluate  $\lim_{\theta \to 0} \left( \frac{\sin 3\theta}{\tan 2\theta} \right)$ .
- **10.** Find  $\frac{dy}{dx}$ , if  $y = xe^x$ .

#### PART—B

 $15 \times 4 = 60$ 

**Instructions:** (1) Answer any **four** questions.

- (2) Each question carries fifteen marks.
- **11.** If  $A = \begin{bmatrix} 3 & -2 \\ 4 & 1 \end{bmatrix}$ . Find  $A^2 3A + 2I$ , where *I* is uni-matrix of order 2.
- **12.** If  $\cos x + \cos y = \frac{1}{3}$  and  $\sin x + \sin y = \frac{1}{4}$ , find  $\tan \left( \frac{x+y}{2} \right)$ .
- **13.** Solve the triangle *ABC*. a=1;  $b=\sqrt{3}$ ; c=2.
- **14.** Find the equation of the Parabola whose focus is the point (3, 4) and whose directrix is the line 3x + y 8 = 0.
- **15.** Differentiate  $\tan^{-1}(\cos\sqrt{x})$  with respect to x.

/4002

2

[Contd...

- **16.** Evaluate  $\frac{\partial u}{\partial x}$ ,  $\frac{\partial u}{\partial y}$ ,  $\frac{\partial^2 u}{\partial x^2}$  and  $\frac{\partial^2 u}{\partial y^2}$  if  $u = x^2 + xy + y^2$ .
- **17.** Find the lengths of the tangent and normal to the curve  $y = x^3$  at (1, 1).
- **18.** Find the maximum and minimum values of  $2x^3 9x^2 + 12x + 15$ .



/**4002** 3 AA21-PDF