

C14-A/AA/AEI/BM/CH/CHST/ C/CM/EC/EE/CHPP/CHPC/CHOT/ PET/M/RAC/MET/MNG/
it/тт/рст-102

4002

BOARD DIPLOMA EXAMINATION, (C-14) SEPTEMBER/OCTOBER - 2020 FIRST YEAR (COMMON) EXAMINATION

ENGINEERING MATHEMATICS-I

Time : 3 hours]

PART—A

Instructions : (1) Answer all questions.
(2) Each question carries three marks.

1. Resolve $\frac{3 x}{(x-2)(x+1)}$ into partial Fractions.
2. If $A=\left[\begin{array}{ll}1 & 3 \\ 2 & 1\end{array}\right]$, find A^{2}.
3. Prove that

$$
\left|\begin{array}{ccc}
1 & 1 & 1 \\
a & b & c \\
b+c & c+a & a+b
\end{array}\right|=0
$$

4. If $A+B=45^{\circ}$, prove that $(1+\tan A)(1+\tan B)=2$.
5. Prove that $\cos ^{4} A-\sin ^{4} A=\cos 2 A$.
6. Find the multiplicative inverse of $2+3 i$.
7. Find the intercepts made by the line $13 x+7 y+11=0$ on the coordinate axes.
8. Find the equation of the circle with centre at $(-1,2)$ and having radius 2 units.
9. Evaluate

$$
\operatorname{Lt}_{x \rightarrow 0} \frac{\sqrt{1+x}-\sqrt{1-x}}{2 x}
$$

10. Differentiate $\frac{2 x+3}{5 x-2}$ with respect to x.

PART—B
Instructions : (1) Answer any five questions.
(2) Each question carries ten marks.
11. (a) Find the adjoint of the matrix

$$
A=\left[\begin{array}{ccc}
2 & -2 & 4 \\
2 & 3 & 2 \\
-1 & 1 & -1
\end{array}\right]
$$

(b) Solve

$$
\begin{aligned}
& x+y+z=6 \\
& x+2 y+3 z=14 \\
& x+4 y+9 z=36
\end{aligned}
$$

by Gauss-Jordan method.
12. (a) If $A+B+C=180^{\circ}$

Prove that $\cos 2 A+\cos 2 B-\cos 2 C=1-4 \sin A \sin B \cos C$.
(b) If $\tan ^{-1} x+\tan ^{-1} y+\tan ^{-1} z=\pi$, prove that $x+y+z=x y z$.
13. (a) Solve

$$
\cos \theta+\sqrt{3 \sin \theta}=1
$$

(b) In any triangle $A B C$, prove that

$$
a \cos A+b \cos B+c \cos C=\frac{2 \Delta}{R}
$$

14. (a) Find the equation of the parabola with focus at $(3,1)$ and directrix is $x+y+1=0$.
(b) Find the ecentricity of the ellipse whose latus rectum in equal to half of the length of major axis.
15. (a) Evaluate

$$
\frac{d}{d x}\left(\cos ^{-1}\left(\frac{1-x^{2}}{1+x^{2}}\right)\right)
$$

(b) If

$$
y=x^{\tan x}, \text { find } \frac{d y}{d x}
$$

16. (a) If $y=\sin (\log x)$, prove that $x^{2} y_{2}+x y_{1}+y=0$.
(b) If $z=\log \left(\mathrm{e}^{x}+e^{y}\right)$, show that

$$
\frac{d z}{d x}+\frac{d z}{d y}=1
$$

17. (a) Find the lengths of tangent, normal, subtangent and subnormal to the curve $x^{2}-y^{2}=9$ at the point $(5,4)$.
(b) A particle is moving along a straight line according to the law $S=2 t^{3}-3 t^{2}+15 t+18$, (t in sec, S is distance $)$. Find its velocity when its acceleration is zero.
18. (a) The sum of two numbers is 24 . Find the numbers when the sum of their squares is minimum.
(b) The radius of a spherical baloon is increased by $0 \cdot 1 \%$. Find the approximate percentage increase in its volume.
