

C14-A/AA/AEI/BM/CH/CHST/C/CM/EC/EE/CHPP/ CHPC/CHOT/PET/M/RAC/MET/MNG/

IT/TT/PCT-102

4002

BOARD DIPLOMA EXAMINATION, (C-14) OCT/NOV-2017 FIRST YEAR (COMMON) EXAMINATION

ENGINEERING MATHEMATICS—I

Time: 3 hours | [Total Marks: 80

PART—A

 $3 \times 10 = 30$

Instructions: (1) Answer **all** questions.

- (2) Each question carries **three** marks.
- (3) Answers should be brief and straight to the point and shall not exceed *five* simple sentences.
- 1. Resolve

$$\frac{1}{x^2(x-2)}$$

into partial fractions.

2. Evaluate:

$$\begin{vmatrix} 1 & 1 & 1 \\ 1 & 1 & a & 1 \\ 1 & 1 & 1 & b \end{vmatrix}$$

/4002 1 [Contd... www.ManaResults.co.in

3. If

is a singular matrix, find the value of x.

4. Show that

$$\frac{\cos 12^{\circ} \ \sin 12^{\circ}}{\cos 12^{\circ} \ \sin 12^{\circ}} \ \tan 57^{\circ}$$

5. Prove that

$$\frac{1}{\tan 3A \quad \tan A} \quad \frac{1}{\cot 3A \quad \cot A} \quad \cot 4A$$

6. If $z \cos i \sin$, show that

$$Z^3 = \frac{1}{z^3} = 2\cos 3$$
, $Z^3 = \frac{1}{z^2} = 2i\sin 3$

- **7.** Find the point of intersection of the lines 3x + 4y + 6 = 0 and 6x + 5y + 9 = 0.
- **8.** Find the equation of the circle, whose centre is the point (-7, -3) and radius is 10.
- **9.** Evaluate:

$$\lim_{x \to 0} \frac{\sin 3x + \sin x}{\sin 4x + \sin 2x}$$

10. If $u e^{ax} \sin by$ then find

$$\frac{u}{x}$$
, $\frac{u}{y}$

/4002 2 [Contd... www.ManaResults.co.in

Instructions: (1) Answer any **five** questions.

- (2) Each question carries ten marks.
- (4) Answers should be comprehensive and the criterion for valuation is the content but not the length of the answer.
- 11. (a) Using matrix inversion method, solve the equations

$$2x \ 8y \ 5z \ 5; x \ y \ z \ 2; x \ 2y \ z \ 2$$

(b) Prove that

$$\begin{vmatrix} 1 & b & c & b^2 & c^2 \\ 1 & c & a & c^2 & a^2 \\ 1 & a & b & a^2 & b^2 \end{vmatrix} (a \quad b)(b \quad c)(c \quad a)$$

12. (a) If

$$A B C \frac{}{2}$$

then prove that $\cos 2A \cos 2B \cos 2C + 1 \sin A \sin B \sin C$.

(b) If

$$\cos^{1} x \cos^{1} y \cos^{1} z$$

then prove that x^2 y^2 z^2 2xyz 1.

13. (a) Solve :

(b) In a ABC, show that

$$\frac{C^2 \sin(A - B)}{\sin A - \sin B} = 0$$

14. (a) Find the eccentricity, centre, vertices, foci, length of the latus-rectum and equation of directices of the ellipse $3x^2 + 4y^2 + 12x + 8y + 4 = 0$.

/4002 3 [Contd... www.ManaResults.co.in

(b) Find the equation of the hyperbola in the form

$$\frac{x^2}{a^2}$$
 $\frac{y^2}{b^2}$ 1

whose eccentricity is 2 and whose distance between the foci is 16.

15. (a) If

$$y \log \sqrt{\frac{1 + \sin x}{1 + \sin x}}$$

find $\frac{dy}{dx}$.

(b) Find

$$\frac{dy}{dx}$$

if $y (\cos x)^{(\cos x)^{(\cos x)^{\cdots}}}$

- **16.** (a) If $x \cos \sin y \cos \sin y$, find $\frac{dy}{dx}$.
 - (b) If

$$y \quad \log(x \quad \sqrt{x^2 \quad 1})$$

show that

$$(1 x^2)y_2 xy_1 0$$

- **17.** (a) Find the lengths of the tangent, normal, sub-tangent, and subnormal for the curve $y x^3 3x 2$ at (0, 2).
 - (b) Find the rate at which the area of an equilateral triangle is increasing when each side is 10 cm and length of each side is increasing at the rate of 2 cm/min.
- **18.** (a) The sum of the sides of a rectangle is constant. If the area is to be maximum show that the rectangle is a square.
 - (b) If the length of a simple pendulum l is a decreased by 2%, find the approximate percentage error in calculated value of its period T, where T 2 $\sqrt{\frac{l}{g}}$, and g is a constant.

* * *