

C14-A/AA/AEI/BM/C/CH/CHOT/CHPC/CHPP/ CHST/CM/EC/EE/IT/M/MET/MNG/ PCT/PET/RAC/TT-102

4002

BOARD DIPLOMA EXAMINATION, (C-14) OCT/NOV-2018
 FIRST YEAR (COMMON) EXAMINATION

ENGINEERING MATHEMATICS—I
Time : 3 hours]
Total Marks : 80
PART—A
$3 \times 10=30$
Instructions : (1) Answer all questions.
(2) Each question carries three marks.
(3) Answers should be brief and straight to the point and shall not exceed five simple sentences.

1. Resolve $\frac{3 x}{(x-2)(x+1)}$ into partial fractions.
2. Define singular matrix. Give an example.
3. Find the value of $\left|\begin{array}{lll}a & h & g \\ h & b & f \\ g & f & c\end{array}\right|$.
4. If $\tan A=\frac{1}{2}$ and $\tan B=\frac{1}{3}$, then show that $A+B=45^{\circ}$.
5. Prove that $\sin \theta \sin \left(60^{\circ}-\theta\right) \sin \left(60^{\circ}+\theta\right)=\frac{1}{4} \sin 3 \theta$.
6. Find real and imaginary parts of the complex number $\frac{3-2 i}{7+4 i}$.
7. Find the acute angle between the lines $2 x-y+3=0$ and $x+y-2=0$.
8. Find centre and radius of the circle $2 x^{2}+2 y^{2}+6 x+2 y+3=0$.
9. Evaluate $\lim _{n \rightarrow \infty}\left[\frac{1^{2}+2^{2}+3^{2}+\cdots+n^{2}}{n^{3}}\right]$.
10. Find derivative of $\frac{2-3 \cos x}{2+3 \cos x}$ with respect to x.

PART—B
$10 \times 5=50$
Instructions: (1) Answer any five questions.
(2) Each question carries ten marks.
(4) Answers should be comprehensive and the criterion for valuation is the content but not the length of the answer.
11. (a) Find the inverse of the matrix $\left[\begin{array}{lll}1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1\end{array}\right]$.
(b) Solve the equations $2 x+y+z=1, x-2 y-3 z=1$ and $3 x+2 y+4 z=5$ by Crammer's method.
12. (a) If $A+B+C=\pi$, then show that

$$
\cos 2 A+\cos 2 B+\cos 2 C=-1-4 \cos A \cos B \cos C
$$

(b) Prove that

$$
2 \tan ^{-1}\left(\frac{1}{3}\right)+\tan ^{-1}\left(\frac{1}{7}\right)=\frac{\pi}{4} .
$$

13. (a) Solve the equation $\cos 8 \theta+\cos 2 \theta=\cos 5 \theta$.
(b) In any $\triangle A B C$ show that $\Sigma a^{3} \sin (B-C)=0$.
14. (a) Find the vertex, focus, directrix and length of latus rectum of parabola $x^{2}=-16 y$.
(b) Find the equation of the conic whose focus is at $(-1,1)$ and directrix $x-4 y+3=0$ with eccentricity $1 / 2$.
[Contd...
15. (a) Differentiate $\log \left(x+\sqrt{x^{2}+1}\right)$ with respect to x.
(b) Find $\frac{d y}{d x}$, if $x=\frac{2 t}{1+t^{2}}$ and $y=\frac{1-t^{2}}{1+t^{2}}$.
16. (a) If $x^{y}=y^{x}$, then show that $\frac{d y}{d x}=\frac{y(x \log y-y)}{x(y \log x-x)}$.
(b) If $u=\log (x+y+z)$, then prove that

$$
x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}+z \frac{\partial u}{\partial z}=1
$$

17. (a) Find the length of tangent, normal, subtangent and subnormal to the curve $y^{2}=4 a x$ at $\left(a t^{2}, 2 a t\right)$
(b) A circular metal plate expands by heating so that its radius increases at the rate of $0.01 \mathrm{~cm} / \mathrm{sec}$. At what rate is surface area increasing when the radius is 2 cm ?
18. (a) Find the maximum and minimum values of $2 x^{3}-9 x^{2}+12 x+10$
(b) If the radius of spherical balloon is increased by $0 \cdot 1 \%$, find the approximate percentage increase in its volume.
