

C14–A/AA/AEI/BM/C/CH/CHOT/CHPC/CHPP/ CHST/CM/EC/EE/IT/M/MET/MNG/

PCT/PET/RAC/TT-102

4002

BOARD DIPLOMA EXAMINATION, (C-14)

OCT/NOV—2018

FIRST YEAR (COMMON) EXAMINATION

ENGINEERING MATHEMATICS—I

Time : 3 hours]

[Total Marks : 80

3×10=30

PART—A

Instructions : (1) Answer **all** questions.

- (2) Each question carries **three** marks.
- (3) Answers should be brief and straight to the point and shall not exceed *five* simple sentences.
- **1.** Resolve $\frac{3x}{(x-2)(x-1)}$ into partial fractions.
- 2. Define singular matrix. Give an example.
- **3.** Find the value of $\begin{vmatrix} a & h & g \\ h & b & f \\ g & f & c \end{vmatrix}$.
- **4.** If $\tan A = \frac{1}{2}$ and $\tan B = \frac{1}{3}$, then show that A = B = 45.
- **5.** Prove that $\sin \sin (60) \sin (60) = \frac{1}{4} \sin 3$.
- **6.** Find real and imaginary parts of the complex number $\frac{3}{7} \frac{2i}{4i}$.
- /4002 1 [Contd... WWW.MANARESULTS.CO.IN

- **7.** Find the acute angle between the lines $2x \ y \ 3 \ 0$ and $x \ y \ 2 \ 0$.
- **8.** Find centre and radius of the circle $2x^2$ $2y^2$ 6x 2y 3 0.
- **9.** Evaluate $\lim_{n} \frac{1^2 \ 2^2 \ 3^2 \ \cdots \ n^2}{n^3}$.

10. Find derivative of $\frac{2}{2} \frac{3\cos x}{3\cos x}$ with respect to x.

PART—B 10×5=50

- (2) Each question carries **ten** marks.
- (4) Answers should be comprehensive and the criterion for valuation is the content but not the length of the answer.

1 2 2

- **11.** (a) Find the inverse of the matrix 2 1 2. 2 2 1
 - (b) Solve the equations $2x \ y \ z \ 1$, $x \ 2y \ 3z \ 1$ and $3x \ 2y \ 4z \ 5$ by Crammer's method.
- **12.** (a) If A = B = C, then show that

 $\cos 2A \quad \cos 2B \quad \cos 2C \quad 1 \quad 4\cos A\cos B\cos C.$

(b) Prove that

$$2 \tan^{-1} \frac{1}{3} \tan^{-1} \frac{1}{7} \frac{1}{4}$$

13. (a) Solve the equation $\cos 8 \quad \cos 2 \quad \cos 5$.

- (b) In any ABC show that $a^3 \sin(B C) = 0$.
- **14.** (a) Find the vertex, focus, directrix and length of latus rectum of parabola x^2 16*y*.
 - (b) Find the equation of the conic whose focus is at (1, 1) and directrix x 4y 3 0 with eccentricity $\frac{1}{2}$.
- /4002 2 [Contd... WWW.MANARESULTS.CO.IN

15. (a) Differentiate $\log(x \sqrt{x^2} - 1)$ with respect to x.

(b) Find
$$\frac{dy}{dx}$$
, if $x \quad \frac{2t}{1 \quad t^2}$ and $y \quad \frac{1 \quad t^2}{1 \quad t^2}$.

16. (a) If $x^y y^x$, then show that $\frac{dy}{dx} \frac{y(x \log y y)}{x(y \log x x)}$.

(b) If $u \log(x \ y \ z)$, then prove that

$$x - \frac{u}{x} \quad y - \frac{u}{y} \quad z - \frac{u}{z} \quad 1$$

- **17.** (a) Find the length of tangent, normal, subtangent and subnormal to the curve $y^2 = 4ax$ at $(at^2, 2at)$
 - (b) A circular metal plate expands by heating so that its radius increases at the rate of 0.01 cm/sec. At what rate is surface area increasing when the radius is 2 cm?
- **18.** (a) Find the maximum and minimum values of $2x^3 \ 9x^2 \ 12x \ 10$.
 - (b) If the radius of spherical balloon is increased by 0.1%, find the approximate percentage increase in its volume.

* * *

/4002