

4054

BOARD DIPLOMA EWAMTMTATION, (C-14) APRIL/MAY-2015

 DME-FIRST YEAR EXAMINATION
ENGINEERING MECHANICS

PART—A

```
Instructions : (1) Answer all questions.
    (2) Each question carries three marks.
    (3) Answer should be brief and straight to the point and
                        shall and not exceed five simple sentences.
```

1. Convert the force of 10 kg into Newton.
2. State Lami's theorem and write the relevant formula.
3. Define the term angle of friction.
4. A body is being pulled by a force of 40 N on a rough inclined plane having coefficient of friction $0 \cdot 3$. Find the weight of the body.
5. Write the formula for parallel axis theorem and explain the terms.
6. State Newton's second law of motion.
7. Give any three examples of rotary motion in daily life.
8. Draw the graph illustrating the law of machine.
9. Draw the figure of second system of pulleys.
10. Define the term 'structure' and give two examples.

PART—B

$10 \times 5=50$

Instructions: (1) Answer any five questions.
(2) Each question carries ten marks.
(3) The answers should be comprehensive and the criterion for valuation is the content but not the length of the answer.
11. The following forces act a point :
(a) 30 N towards east
(b) 25 N towards north
(c) 35 N towards west
(d) 45 N towards south

Find the magnitude and direction of resultant force.
13. Determine MI of C-section shown in the figure below about centroidal axis. All dimensions are in mm :

14. A bullet of mass 0.1 kg is fired into a target with a velocity of $350 \mathrm{~ms}^{-1}$. The mass of the target is 10000 grams and it is free to move. Calculate loss of kinetic energy.
15. A body executing SHM has maximum displacement from mean position as 6 m . Find its amplitude, maximum acceleration and angular velocity, if its time period is π seconds.
16. The velocity ratio of lifting machine is 10 . The initial frictional and the efficiency at this load.
17. (a) Find least radius of gyration of a rectangular lamina of 50 mm base and 80 mm height.
(b) Draw line diagram of Whitworth quick return mechanism and label is parts.
18. (a) The resultant of two equal forces acting at a point with an angle of 60° between them is 20 N . Find the magnitude of each force.
(b) In a system of pulleys of the first type, there are three pulleys and a weight of 350 N can be supported by an effort
of 50 N . Find the efficiency of the machine and moment of pulleys and a weight of 350 N can be supported by an effort
of 50 N . Find the efficiency of the machine and moment of effort lost in friction.

Abstract

resistance is 20 N and increases uniformly at the rate of 0.01 N per Newton load. Find the effort recuired to lift a load of 5000 N

