с14-м-303

4251

BOARD DIPLOMA EXAMINATION, (C-14) OCT/NOV—2016
 DME-THIRD SEMESTER EXAMINATION

BASIC ELECTRICAL AND ELECTRONICS ENGINEERING

Time : 3 hours]

[Total Marks : 80

PART—A
$3 \times 10=30$

Instructions : (1) Answer all questions.
(2) Each question carries three marks.
(3) Answers should be brief and straight to the point and shall not exceed five simple sentences.

1. State Kirchhoff's voltage law (KVL) and Kirchhoff's current law (KCL).
2. Define the terms (a) electric field intensity and (b) permittivity related to electrostatics.
3. Define work, power and energy, and mention their units.
4. Draw the power flow diagram of DC generator.
5. Define the terms (a) form factor and (b) amplitude related to sinusoidal AC wave.
6. State the relationship between speed and frequency of an alternator.
7. List the types of single-phase induction motors.
8. Distinguish between intrinsic and extrinsic semiconductors.
9. Draw a neat sketch of pipe earthing and label the parts.
10. State the procedure to be adopted in case of electric shock.

PART-B

$10 \times 5=50$

Instructions : (1) Answer any five questions.
(2) Each question carries ten marks.
(3) Answers should be comprehensive and the criterion for valuation is the content but not the length of the answer.
11. (a) State Faraday's laws of electromagnetic induction.
(b) A heater immersed in water has a resistance of 125Ω and is connected to a 500 V DC supply. Calculate (i) current taken and (ii) power.

5
12. (a) Derive an expression for lifting power of a magnet.
(b) Define the terms (i) flux and (ii) reluctance of a magnetic field.
13. (a) Draw the connection diagram of welding generator and label the parts.
(b) Briefly explain the working principle of DC generator.
14. (a) Explain speed control of DC shunt motor by (i) field control and (ii) armature control methods.
(b) State the relation (three-phase system) between phase values and line values of voltage and current in case of (i) star and (ii) delta connections.
15. A circuit consists of 12Ω resistance is in series with a capacitance of $100 \mu \mathrm{~F}$. It is connected across a supply of 230 V , 50 Hz . Find (a) reactance, (b) impedance (c) current, (d) power factor and (e) power.
16. (a) Explain the working principle of transformer with neat
sketch.

5
(b) Draw a neat sketch of star-delta starter used in 3-phase induction motor.

5
17. (a) Describe the operation of Zener diode with the help of neat sketch.
(b) Explain the operation of LED with neat sketch. 5
18. Explain the construction details and working principle of dynamometer-type wattmeter with neat sketch.10

