с14-м-304

4252

BOARD DIPLOMA EXAMINATION, (C-14) MARCH/APRIL-2018 DME—THIRD SEMESTER EXAMINATION

BASIC THERMODYNAMICS

Time : 3 hours]
Total Marks : 80

PART—A
$3 \times 10=30$

Instructions : (1) Answer all questions.
(2) Each question carries three marks.
(3) Answers should be brief and straight to the point and shall not exceed five simple sentences.
(4) Assume missing data wherever necessary.

1. Define temperature and absolute zero.
2. Convert 740 mm of Hg into $\mathrm{kN} / \mathrm{m}^{2}$.
3. State Clausius statement related to second law of thermodynamics.
4. State Boyle's law and represent it on a $P-V$ diagram.
5. If characteristic gas constant of a gas is $0.348 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}$, find the molecular weight of the gas.
6. Prove that change in enthalpy, $d H=m c_{p}\left(T_{2}-T_{1}\right)$.
7. Write the expression for entropy of constant temperature process and name the terms involved in it.
[Contd...
8. Define lower calorific value and justify that it is always less than higher calorific value.
9. Find the higher calorific value of the fuel whose composition by mass is as follows :

Carbon $=75 \%$
Hydrogen $=5 \%$
Sulphur = 3\%
Oxygen = 9\%
Nitrogen $=4 \%$
and the remainder being ash.

$$
1+1+1
$$

10. Write any six desired characteristics of fuel.

PART-B

Instructions : (1) Answer any five questions.
(2) Each question carries ten marks.
(3) Answers should be comprehensive and the criterion for valuation is the content but not the length of the answer.
(4) Assume missing data wherever necessary.
11. A system undergoes a cycle composed of four processes and the energy transfers are tabulated below :

Process	$Q \mathrm{~kJ} / \mathrm{min}$	$W \mathrm{~kJ} / \mathrm{min}$	$d u \mathrm{~kJ} / \mathrm{min}$
$1-2$	550	200	-
$2-3$	130	-	280
$3-4$	-400	-	-
$4-1$	0	90	-

(a) Complete the table.
(b) Determine the rate of work in kW .
12. (a) Write steady flow energy equation for an open system and state the terms involved in it.
(b) Derive the relation $C_{V}=\frac{R}{\gamma-1}$.
13. An ideal gas is expanded from $400 \mathrm{kN} / \mathrm{m}^{2}$ and $0.04 \mathrm{~m}^{3}$ to $120 \mathrm{kN} / \mathrm{m}^{2}$ and $0 \cdot 1 \mathrm{~m}^{3}$. The temperature fell down during this process was observed as $150{ }^{\circ} \mathrm{C}$. If $C_{P}=1.025 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}$ and $C_{V}=0.765 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}$, find (a) the change in internal energy and
(b) the mass of the gas.
14. Show that for a polytropic process heat transfer

$$
Q=\left[\frac{\gamma-n}{\gamma-1}\right] W
$$

15. A quantity of gas has an initial pressure, volume and temperature of $60 \mathrm{kN} / \mathrm{m}^{2}, 0.2 \mathrm{~m}^{3}$ and $35{ }^{\circ} \mathrm{C}$ respectively. It is expanded to a pressure of $40 \mathrm{kN} / \mathrm{m}^{2}$, according to the law $P V^{\gamma}=C$. Determine-
(a) the mass of the gas;
(b) work transfer to the gas;
(c) heat transfer from the gas;
(d) change in entropy.

Take $C_{P}=1.005 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}$ and $C_{V}=0.717 \mathrm{~kJ} / \mathrm{kg} \mathrm{K} . \quad 2+3+3+2$
16. 5 kg of an ideal gas is connected in a rigid cylinder. 35 kJ of heat is added to the gas, which has an initial temperature of $40^{\circ} \mathrm{C}$. Determine-
(a) final temperature;
(b) change in entropy.

Take $R=0.328 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}$ and $\gamma=1.36$.
17. Write about Orsat apparatus with a neat sketch.
18. The percentage composition of a sample of fuel by mass is found to be $\mathrm{C}=90 \%, \mathrm{H}_{2}=5 \%, \mathrm{O}_{2}=2 \%, \quad \mathrm{~S}_{2}=0 \cdot 8 \%$ and remaining ash. Calculate-
(a) the minimum amount of air required for complete combustion of one kg of fuel;
(b) the percentage composition by mass of dry products of combustion, if 40% excess air is supplied.

