4252
 BOARD DI PLOMA EXAMI NATI ON, (C-14)
 MARCH / APRIL-2019
 DME - THIRD SEMESTER EXAMI NATI ON

BASIC THERMODYNAMICS
Time: 3 hours
Max. Marks: 80
PART-A
$10 \times 3=30 \mathrm{M}$
Instructions: 1) Answer all questions.
2) Each question carries three marks.
3) Answers should be brief and straight to the point.

1) State the first law of thermodynamics and give its mathematical representation.
2) A tank containing air is stirred by a paddle wheel. The work input to the tank is 1000 KJ , and heat transferred from the tank is 400 KJ . Calcalute the change in internal energy.
3) State the Clausius statement of Second law of thermodynamics.
4) State the following laws
(a) Joule law and (b) Regnault's law
5) State the terms invovled in the equation $C p=\frac{\gamma R}{\gamma-1}$
6) Represent Isentropic process on P-v and T-s Diagram.
7) Define the term Entropy and write its mathematical expression.
8) List out any six desired characteristics of fuel.
9) Write down any three advantages and disadvantages of liquid fuels over solid fuels.
10) Find higher and lower calorific values of given coal having $\mathrm{C}=90 \%, \mathrm{H}_{2}=5 \%, \mathrm{~S}=1 \%$ and the remaining is ash by mass.
/ 4258 WWW. MANARESULTS.CO.IN ${ }^{\text {[Contd... }}$

PART-B

$5 \times 10=50 \mathrm{M}$

Instructions: 1) Answer any five questions.
2) Each question carries ten marks.
3) Answers should be comprehensive and the criterion for valuation is the content but not the length of the answer.
11) A system undergoes a cycle composed of four processes and the energy transfers are tabulated below

Process	$\mathrm{Q}(\mathrm{kj} / \mathrm{min}$	$\mathrm{W}(\mathrm{kj} / \mathrm{min})$	$\mathrm{du}(\mathrm{kj} / \mathrm{min})$
$1-2$	550	230	-
$2-3$	230	-	380
$3-4$	-500	-	-
$4-1$	0	70	-

(a) Complete the table and
(b) Determine the rate of work in kW.
12) (a) A closed system executes a process during which 10 KJ of heat is supplied to system. Find the change in internal energy under the following conditions
(i) 5 KJ of work is done on the system
(ii) 2.5 KJ of work is done by the system.
(b) Carbon dioxide (Molecular weight $=44$) occupies a tank of $100^{\circ} \mathrm{C}$. If the volume of the tank is $0.5 \mathrm{~m}^{3}$ and the pressure is 500 kPa . Determine the mass of the gas in the tank.
13) 2.5 kg of an ideal gas is expanded from a pressure of 700 KPa and volume $1.5 \mathrm{~m}^{3}$ to a pressure of 140 KPa and volume of $4.5 \mathrm{~m}^{3}$. The change in internal energy is 500 KJ . Specific heat at constant volume for the gas is $0.719 \mathrm{KJ} / \mathrm{kg}-\mathrm{k}$. Determine
(a) Gas constant and
(b) Initial and final temperatures.
14) 1 kg of air at 1 bar and $27^{\circ} \mathrm{C}$ compressed polytropically to a pressure of 15 bar, and air temperature rises to $227^{\circ} \mathrm{C}$. Determine
(a) The polytropic index
(b) The final volume
(c) The work compression and
(d) The amount of heat rejected from the air Assume $\mathrm{R}=0.287 \mathrm{KJ} / \mathrm{kg} . \mathrm{k}$
15) $0.12 \mathrm{~m}^{3}$ of air at 1.5 MPa and $1500^{\circ} \mathrm{C}$ expands adiabatically to 175 KPa . Find the
(i) Final temperature and
(ii) Workdone

Take $\mathrm{C}_{\mathrm{p}}=1.005 \mathrm{KJ} / \mathrm{kg} . \mathrm{K}: \mathrm{C}_{\mathrm{v}}=0.717 \mathrm{KJ} / \mathrm{kg} . \mathrm{K}$
16) 1 kg of air expands isothermally at a constant temperature of $127^{\circ} \mathrm{C}$. Find the work done if the initial pressure is $207 \mathrm{KN} / \mathrm{m}^{2}$ and the final pressure is $69 \mathrm{KN} / \mathrm{m}^{2}$. Assume $\mathrm{R}=0.287 \mathrm{KJ} / \mathrm{kg} . \mathrm{K}$.
17) Explain the working principle of junkers gas calorimeter with a neat sketch.
18) The composition of a fuel on mass basis as follows $C=90 \%$, $\mathrm{H}_{2}=3.5 \%, \mathrm{O}_{2}=1 \%, \mathrm{~S}=0.5 \%$ and $\mathrm{N}_{2}=5 \%$.
(a) Calculate the minimum air required for complete combustion of 1 kg of this fuel.
(b) The composition of dry fuel gases on mass basis considering 50\% of excess air is supplied.

