C14-M-304

4252
 BOARD DIPLOMA EXAMINATION, (C-14) MARCH/APRIL-2021
 DME - THIRD SEMESTER EXAMINATION
 BASIC THERMODYNAMICS

Time : 3 hours]
[Total Marks : 80

PART—A

Instructions: (1) Answer any five questions.
(2) Each question carries four marks.
(3) Answers should be brief and straight to the point and shall not exceed five simple sentences.

1. What are the types of thermodynamic systems?
2. Define thermodynamic cycle.
3. State first law of thermodynamics.
4. State Boyle's law.
5. Define specific heat at constant pressure.
6. Write an expression for change of entropy in constant pressure process.
7. Define throttling process.
8. List out desirable characteristics of fuel.
9. Define calorific value of fuel.
10. What is meant by combustion of fuel?

Instructions : (1) Answer any four questions.
(2) Each question carries fifteen marks.
(3) Answers should be comprehensive and criterion for valuation is the content but not the length of the answer.
11. A system executes a cyclic process as follows :

At point $-1,20 \mathrm{~kJ}$ of heat is supplied and 3 kJ of work is done by the system.

At point $-2,2 \mathrm{~kJ}$ of heat is rejected and 5 kJ of work is done by the system.

At point $-3,15 \mathrm{~kJ}$ of heat is supplied and 9 kJ of work is done by the system.

At point $-4,20 \mathrm{~kJ}$ of heat is supplied to the system.
What is the work is done at the fourth point?
12. (a) State Zeroth law of thermodynamics.
(b) State Joule's law.
13. Derive the characteristic gas equation.
14. 1 kg of gas is heated from $25^{\circ} \mathrm{C}$ to $200^{\circ} \mathrm{C}$. Estimate (a) change in enthalpy and (b) change in internal energy, if $C_{P}=0.98 \mathrm{~kJ} / \mathrm{kgK}$ and $C_{V}=0.73 \mathrm{~kJ} / \mathrm{kgK}$.
15. $0.028 \mathrm{~m}^{3}$ of air at a pressure of 7 bar and a temperature of 773 K is expanded at constant pressure to a volume of $0.034 \mathrm{~m}^{3}$. Find the change in entropy, if the characteristic gas constant is $0.287 \mathrm{~kJ} / \mathrm{kg} / \mathrm{K}$ and C_{V} is $0.692 \mathrm{~kJ} / \mathrm{kgK}$.
16. $0.12 \mathrm{~m}^{3}$ of air at 1.5 MPa and $1500{ }^{\circ} \mathrm{C}$ expands adiabatically to 175 kPa and $690^{\circ} \mathrm{C}$. Find the work done if $C_{P}=1.0035 \mathrm{~kJ} / \mathrm{kg}^{\circ} \mathrm{K}$ and $C_{V}=0.7165 \mathrm{~kJ} / \mathrm{kg}^{\circ} \mathrm{K}$.
17. Write the sequence procedure for determination of calorific value of fuel using bomb calorimeter.
18. Explain the working principle of Junker's gas calorimeter with a line diagram.

