

с14-м-304

4252

BOARD DIPLOMA EXAMINATION, (C-14) OCT/NOV-2017

DME—THIRD SEMESTER EXAMINATION

BASIC THERMODYNAMICS

Time : 3 hours]

[Total Marks : 80

PART—A 3×10=30

Instructions : (1) Answer **all** questions.

- (2) Each question carries **three** marks.
- (3) Answers should be brief and straight to the point and shall not exceed *five* simple sentences.
- (4) Assume missing data where ever necessary.
- **1.** Define state and system. $1\frac{1}{2}+1\frac{1}{2}$
- **2.** Define enthalpy and internal energy. $1\frac{1}{2}+1\frac{1}{2}$
- **3.** State Kelvin-Planck statement.
- 4. State Avogadro's law.
- 5. Explain each term in the relation

$$C_V = \frac{R}{1}$$

/4252

www.ManaResults.co.in

- **6.** Show that heat transferred is equal to change in enthalpy, for a constant pressure process. $1\frac{1}{2}+1\frac{1}{2}$
- **7.** Define entropy and write its unit. 2+1
- 8. Define higher calorific value.
- **9.** Write the solutions used to absorb CO_2 , O_2 and CO in Orsat apparatus. 1+1+1
- Write any three advantages and three disadvantages of liquid fuels. ?????????

 $0 \times 5 = 50$

5

5

Instructions : (1) Answer any **five** questions.

- (2) Each question carries **ten** marks.
- (3) Answers should be comprehensive and the criterion for valuation is the content but not the length of the answer.
- (4) Assume missing data where ever necessary.
- 11. The pressure of the fluid in a system is the linear function of volume given by the equation, P = a = bv, where a and b are constants and P is in kN / m², and v is in m³. If the system changes from initial condition of 200 kN/m² and 0.1 m³ the final condition of 500 kN / m² and volume of 0.4 m³, determine the work transfer.
- **12.** (*a*) Heat is supplied to a heat engine at the ratio of 70 kJ/s giving an output of 30 kW. Calculate thermal efficiency and the rate at which heat is rejected.
 - (b) Derive characteristic gas equation.

/4252

13. A mass of air has an initial pressure of $2.3 \text{ MN} / \text{m}^2$, volume of 0.016 m^3 and temperature = 150 °C. It is then expanded until

its final pressure is $475 \text{ kN} / \text{m}^2$ and its volume becomes 0 078 m³. Determine—

(a) the mass of air;

(b) the final temperature of air. Take $R = 0.287 \text{ kJ}/\text{kg}^{\circ}\text{k}$ 2+2+3+3

14. Derive the expression for (a) work transfer and (b) change in entropy in an isothermal process.5+5

15. A quantity of gas has an initial pressure, volume and temperature of 240 kN / m^2 , 0.4 m³ and 25 °C respectively. It is expanded to a pressure of 140 kN / m^2 according to the law PV^{135} C. Determine—

(a) the change in entropy;

(b) work transfer to the gas;

(c) heat transfer from the gas. [Take C_p 1 005 kJ/kg°k and C_V 0 715 kJ/kg°k] 2+4+4

16. A 2 kg of air at a pressure of 850 kN / m² occupies a volume of 2 m³. The air is then expanded to a pressure of 300 kN / m² at constant volume. Find the—

(a) work done;

/4252

(b) heat transfer;

(c) change in entropy during expansion.

[Take $R = 0.287 \text{ kJ/kg}^{\circ}\text{k}$ and $C_v = 0.717 \text{ kJ/kg}^{\circ}\text{k}$] 2+5+3

17. Write about Junker's calorimeter with a neat sketch. 5+5

www.ManaResults.co.in

- 18. The percentage composition of a sample of fuel by mass is found to be C = 76%, H₂ 5 2%, O₂ 12 8%, N₂ 2 7%, S₂ 1 2% and remaining ash. Calculate—
 - (a) the minimum amount of air required for complete combustion of one kg of fuel;
 - *(b)* percentage composition by mass of dry products of combustion. 5+5

 $\star\star\star$

*