C14-M/CHOT/RAC-401

4477

BOARD DIPLOMA EXAMINATION, (C-14)
 JUNE—2019
 DME—FOURTH SEMESTER EXAMINATION
 ENGINEERING MATHEMATICS - III

Time : 3 Hours]
[Total Marks : 80

$$
\text { PART—A } 3 \times 10=30
$$

Instruction : (1) Answer all questions.
(2) Each question carries Three marks.

1. Solve

$$
\left(D^{2}+4 D+4\right) y=0
$$

2. Solve

$$
\left(D^{3}-7 D-6\right) y=0
$$

3. Find the particular integral of $\left(4 D^{2}+4 D-3\right) y=e^{3 x}$.
4. Find the Laplace transform of $e^{4 t}-3 t^{2}+2 \cos t$.
5. Find the Laplace transform of $\sin ^{2} t$.
6. Find the Laplace transform of $t e^{4 t}$.
7. Find the inverse Laplace transform of $\frac{2 s+1}{s^{2}-9}$.
8. Write down the formulae for finding Euler's constants for $f(x)$ in $(0,2 \pi)$.
9. What is the value of b_{n} in the Fourier series expansion of

$$
f(x)=x \sin x \text { in }(-\pi, \pi)
$$

10. When two dice are thrown, find the probability of obtaining total scores 7 .

PART-B

Instruction : (1) Answer any five questions.
(2) Each question carries Ten marks.
11. (a) Solve

$$
\left(D^{2}+5 D+6\right) y=e^{-2 x}
$$

(b) Solve

$$
\left(D^{2}+25\right) y=\cos 5 x
$$

12. (a) Solve

$$
\left(D^{2}-4 D+3\right) y=e^{2 x}-\sin 3 x
$$

(b) Solve

$$
\left(D^{2}+3 D+2\right) y=x^{2}
$$

13. (a) Find the Laplace transform of $e^{-3 t}(\cos 5 t-\sin 3 t)$.
(b) Find the Laplace transform of $t^{2} \cos t$.
14. (a) Evaluate $\int_{0}^{\infty} e^{-4 t} \sin 3 t$
(b) Find $L^{-1}\left\{\frac{2 s+1}{s^{2}+9}\right\}$
15. Write down the Fourier series for $f(x)=|x|$ in the interval $-\pi<x<\pi$.
16. Find the cosine and sine series for $f(x)=\pi-x$ in $(0, \pi)$.
17. (a) A card is drawn from a packet of hundred cards numbered 1 to 100. Find the probability of drawing a number which is divisible by 13.
(b) Find the probability of getting at least 2 heads when tossing 6 coins.
18. (a) 5 boys and 3 girls sit in a row at random. Find the probability that no two girls sit together.
(b) If $P(A)=0.4, P(B)=0.7$ and $P(A \cap B)=0.3$, find $P(\bar{A} \cap \bar{B})$ and $P(\bar{A} \cup \bar{B})$.
