

C14-M-401/C14-CHOT-401/C14-RAC-401

 4477

 4477}

BOARD DIPLOMA EXAMINATION, (C-14) OCT/NOV—2016
 DME—FOURTH SEMESTER EXAMINATION

ENGINEERING MATHEMATICS—III
Time : 3 hours]
[Total Marks : 80

PART—A

$3 \times 10=30$

Instructions : (1) Answer all questions.
(2) Each question carries three marks.
(3) Answers should be brief and straight to the point and shall not exceed five simple sentences.

1. Solve $\left(D^{2}-4 D+4\right) y=0$.
2. Solve $y^{\prime \prime \prime}-2 y^{\prime \prime}-3 y^{\prime}=0$.
3. Find the particular integral of $\left(D^{2}+4 D+4\right) y=e^{-2 x}$.
4. Find $L\left\{e^{2 t}+4 t^{3}-2 \sin 3 t+3 \cos 3 t\right\}$.
5. Find $L\left\{\frac{\sin t}{t}\right\}$.
6. Evaluate $\int_{0}^{\infty} t e^{-3 t} d t$ by using Laplace transform method.
7. Find the inverse Laplace transform of $\frac{5 s+10}{9 s^{2}+16}$.
[Contd...
8. Find the value of a_{0} in $f(x)=x$ in the interval $(0,2 \pi)$ by Fourier's series.
9. Find the value of b_{n} in $f(x)=\cos x$ in $(-\pi, \pi)$ in Fourier's series expansion.
10. Write down the mathematical definition of probability.

> PART—B
$10 \times 5=50$
Instructions : (1) Answer any five questions.
(2) Each question carries ten marks.
(3) Answers should be comprehensive and the criterion for valuation is the content but not the length of the answer.
11. Solve $\left(D^{2}+5 D+6\right) y=\sin x+e^{-2 x}$.
12. (a) Solve $\left(D^{2}+9\right) y=\cos ^{2} x$.
(b) Solve $\left(D^{2}+D+2\right) y=x$.
13. Find (a) $L\left\{e^{-t} t \sin 2 t\right\}$, and (b) $L^{-1}\left\{\frac{s}{(s+2)^{2}+4}\right\}$.
14. (a) Find $L^{-1}\left\{\frac{1}{(s-1)(s+2)}\right\}$.
(b) Solve $y^{\prime \prime}+y=\sin 3 t$ with $y(0)=y^{\prime}(0)=0$, by using Laplace transform method.
15. Find the Fourier's series for $f(x)=x-x^{2}$ in the interval $(-\pi, \pi)$.
16. Find the half-range Cosine series for the function $f(x)=x \sin x$ in the interval $(0, \pi)$.
[Contd...
17. (a) A committee of two persons is selected from two men and two women. Find the chance that the committee will have (i) no man, (ii) one man, and (iii) two men.
(b) What is the probability that a leap year, selected at random, will have 53 Sundays?
18. (a) Two dice are tossed once. Find the probability of getting 'an even number on the first die or a total of 8 '.
(b) A problem in statistics is given to three students A, B, C whose chances of solving it are $\frac{1}{2}, \frac{1}{3}, \frac{1}{4}$ respectively. If they try it independently, what is the probability, that the problem will be solved?

