BOARD DIPLOMA EXAMINATION, (C-14)
OCT / NOV-2017
DME-FOURTH SEMESTER EXAMINATION
FLUID MACHANICS AND HYDRALUIC MACHINERY
Time : 3 Hours]

> PART - A
$3 \times 10=30$
Instructions : (1) Answer all questions.
(2) Each question carries three marks.
(3) Answers should be brief and straight to the point and shall not exceed five simple sentences.

1. Define the following fluid properties
a) Specific Gravity
b) Specific Weigh
2. Define Viscosity. Write the relation between Dynamic Viscosity and Kinematic Viscosity.
3. Define the following terms
a) Steady flow b) Turbulent flow.
4. State Bernoulli's theorem.
5. What is syphon? And State its function.
6. Water flows through a pipe of 400 mm diameter and 1400 m long with a velocity of $1 \mathrm{~m} / \mathrm{s}$ find the head lost due to friction by using Darcy's formula. Take $\mathrm{f}=0.006$.
7. A jet of water 75 mm diameter strikes normally on a fixed flat vertical plate. Determine the force exerted by the jet, when the jet strikes the plate with a velocity of $20 \mathrm{~m} / \mathrm{s}$.
8. Write any three differences between Impulse turbine and Reaction turbine.
9. Draw the layout of Hydro electric power plant and indicate elements of the plant.
10. Write any three differences between Centrifugal pump and Reciprocating pump.

> PART - B
$10 \times 5=50$
Instructions : (1) Answer any five questions.
(2) Each question carries ten marks.
/4481
1
(3) Assume suitable data, missing if any.
(4) *Answers should be comprehensive and the criteria for valuation is the content but not the length of the answer.
11. The right limb of a simple U-tube manometer containing mercury is open to the atmosphere and left limb is connected to a pipe in which a fluid of specific gravity 0.85 is flowing. The center of pipe is 10 cm below the level of mercury in the right limb. Find the pressure of fluid in the pipe if the differance in the mercury level is 18 cm .
12. The diameter of pipe changes gradually from 150 mm at point A to 100 mm at point B which are situated at 20 m and 16 m respectively above the datum. The pressure at A is $0.2 \mathrm{~N} / \mathrm{mm}^{2}$ and velocity of the flow at A is $1.1 \mathrm{~m} / \mathrm{s}$, neglecting losses between A and B determine the pressure at B .
13. In a water power scheme the water is available at a head of 200 m and is carried through a pipe of length 800 m . Determine the minimum diameter of the pipe that will convey water for an output of 1000 KW at 80% efficiency. Take $\mathrm{f}=0.008$.
14. A jet of water of diameter 10 cm strikes a flat plate normally with a velocity of $15 \mathrm{~m} / \mathrm{s}$. The plate is moving with a velocity of $6 \mathrm{~m} / \mathrm{s}$ in the direction of the jet on the plate. Find (a) Work done by the jet on the plate / sec. (b) Efficiency of the jet.
15. a) Derive an expression to find the normal force developed when a jet impact on a curved fixed plate.
b) Write any five differences between Francis turbine and Kaplan turbine.
16. A Pelton wheel having a mean bucket diameter of 1.2 m is running at 600 rpm the net head on the Pelton wheel is 400 m . If the bucket deflects the jet by 165° and discharge through the nozzle is 150 liters / sec find (a) Power available at the nozzle (b) Hydraulic efficiency. Take $\mathrm{Cv}=0.98$.
17. A Single acting reciprocating pump as its piston diameter 200 mm and its stroke 300 mm and speed of crank 60 rpm . The suction and delivery heads of 5 m and 16 m respectively. Determine the power required to drive the pump if its efficiency is 70\%.
18. Explain the working of a centrifugal pump with neat sketch.

