6201

BOARD DIPLOMA EXAMINATION, (C-16) OCTOBER/NOVEMBER—2023 THIRD SEMESTER (COMMON) EXAMINATION

ENGINEERING MATHEMATICS—II

Time: 3 Hours [Total Marks: 80

PART—A 3×10=30

Instructions: (1) Answer **all** questions.

(2) Each question carries three marks.

1. Evaluate $\int \frac{1}{1+\sin x} dx$

2. Evaluate $\int \frac{(1 + \log x)^5}{x} dx$

3. Evaluate $\int_{1}^{\sqrt{3}} \frac{1}{1+x^2} dx$

4. Find the area enclosed by the parabola $y = x^2$ with x-axis between x = 0 and x = 1.

5. Find $L(t^3 + e^{-t} + 3\cos 3t)$

6. Find $L^{-1}\left\{\frac{2s+5}{s^2+4}\right\}$

7. Define Fourier series of a function f(x) in $(c, c + 2\pi)$.

8. Find the differential equation of the family of parabolas $y^2 = 4ax$.

9. Solve $\frac{dy}{dx} = e^{x+y} + x^2 e^y$

10. Solve $(D^2 + 4)y = 0$

 Instructions: (1) Answer *any* **five** questions.

- (2) Each question carries ten marks.
- **11.** (a) Evaluate $\int \sin^9 x \cdot \cos^3 x \ dx$
 - (b) Evaluate $\int \frac{1}{5+4\cos x} dx$
- **12.** (a) Evaluate $\int x^3 \cos 3x \, dx$
 - (b) Evaluate $\int_{0}^{\frac{\pi}{2}} \frac{\sqrt{\sin x}}{\sqrt{\sin x} + \sqrt{\cos x}} dx$
- **13.** (a) Find the RMS value of $\sqrt{27-4x^2}$ over the range x = 0 to x = 3.
 - (b) Find the volume of the solid obtained by revolving the ellipse $25x^2 + 16y^2 = 400$ about x-axis.
- **14.** (a) Find the value of $\int_{0}^{3} \frac{1}{1+x} dx$ using Simpson's rule by dividing the range into 6 equal parts.
 - (b) Find $L\{te^{2t}\cos 3t\}$
- **15.** (a) Find $L^{-1} \left[\frac{1}{s(s+2)} \right]$
 - (b) Using Convolution theorem, evaluate $L^{-1}\left\{\frac{1}{(s-1)(s-2)}\right\}$.

/6201 2 [Contd...

- **16.** Find the Fourier series for the function $f(x) = x^2$ in the interval $[-\pi, \pi]$.
- **17.** (a) Solve $\frac{dy}{dx} + \frac{y}{x} = \frac{1}{x^2}$
 - (b) Solve $\{x^2 + 2xy\}dx + (x^2 + e^y)dy = 0$
- **18.** (a) Solve $(D^2 + D 6)y = x^2$
 - (b) Solve $(D^2 + 9)y = \cos 2x$

