6052

BOARD DIPLOMA EXAMINATION MARCH/APRIL - 2019 COMMON FIRST YEAR EXAMINATION ENGINEERING MATHEMATICS - I

Time: 3Hours Max. Marks: 80

 $\overline{PART - A} \qquad 10 \times 3 = 30$

Instructions:

- Answer ALL questions and each question carries THREE marks
- Answers should be brief and straight to the point and shall not exceed **FIVE** simple sentences
- (1) Resolve $\frac{x+3}{(x-3)(x+1)}$ into Partial Fractions

(2) If
$$A = \begin{bmatrix} 1 & -3 & 2 \\ 2 & 1 & -3 \\ 4 & 3 & 3 \end{bmatrix}$$
 and $B = \begin{bmatrix} 2 & -2 & -4 \\ -1 & 3 & 4 \\ 1 & 2 & 3 \end{bmatrix}$ then find $2A + 3B$

(3) If
$$A = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 3 & 4 \\ 5 & -6 & x \end{bmatrix}$$
 and $det(A) = 48$ then find the value of x

(4) Prove that
$$\frac{\sin(A-B)}{\sin A \sin B} + \frac{\sin(B-C)}{\sin B \sin C} + \frac{\sin(C-A)}{\sin C \sin A} = 0$$

- (5) If $\tan \theta = \frac{1}{2}$ then find $\cos 2\theta$ and $\sin 2\theta$
- (6) Find the modules of the complex number (3+2i)(1+2i)
- (7) Find the equation of line passing through the point (3, -4) and having inclination 60°
- (8) Find the angle between the lines 3x y + 4 = 0 and 2x + y + 2 = 0

/6052 [Contd...

(9) Evaluate
$$\lim_{x\to -2} \left(\frac{x^2+x-2}{x^2+x+3}\right)$$

(10) Find the derivative of $(x+3)(2x^3+3)$ with respect to x

$$\boxed{PART - B} \qquad \qquad 5 \times 10 = 50$$

<u>Instructions:</u>

- Answer ANY FIVE questions and each question carries TEN marks
- The answers should be comprehensive and criteria for valuation is the content but not the length of the answer
- (11) (a) Solve the equations x + 2y z = -1, 3x y 2z = 5 and x y 3z = 0 by Crammer's Rule
 - (b) Find the adjoint of the matrix $\begin{bmatrix} 2 & 3 & -1 \\ -4 & 0 & 3 \\ 3 & -1 & 7 \end{bmatrix}$
- (12) (a) Prove that $\sin 78^{\circ} \sin 18^{\circ} + \cos 132^{\circ} = 0$
 - (b) If $Sin^{-1}x + Sin^{-1}y + Sin^{-1}z = \frac{\pi}{2}$ then show that $x^2 + y^2 + z^2 + 2xyz = 1$
- (13) (a) Solve the equation $2 \cos^2 \theta = 1 + \sin \theta$
 - (b) In a $\Delta^{le}ABC$ prove that (b+c) $sin\left(\frac{A}{2}\right)=a$ $cos\left(\frac{B-C}{2}\right)$
- (14) (a) Find the equation of the Circle whose center is at the point (-1, 2) and radius is 5 units
 - (b) Find the vertex, focus equation of axis, latus rectum, directrix and length of latus rectum of the Parabola $y^2=32x$

/6052 * [Contd...

(15) (a) Find
$$\frac{dy}{dx}$$
, if $y = \cos^{-1}\left(\frac{1-x^2}{1+x^2}\right)$

(b) Find
$$\frac{dy}{dx}$$
 if $y = (\sin x)^{\cos x}$

(16) (a) Find
$$\frac{d^2y}{dx^2}$$
, if $x = 6(\theta + \sin \theta)$, $y = 6(1 - \cos \theta)$

(b) If
$$u(x, y) = x^2 + y^2 + 9xy$$
, then find $\frac{\partial u}{\partial x}$, $\frac{\partial u}{\partial y}$, $\frac{\partial^2 u}{\partial x \partial y}$ and $\frac{\partial^2 u}{\partial y \partial x}$

- (17) (a) Find the equations of tangent and normal to the curve $y=x^2-2x-3$ at (0, -3)
 - (b) A circular metal expands by heat so that its radius increases at the rate of 2 cm/sec.Find the rate of increase of its area when the radius is 24 cm
- (18) (a) The sum of two numbers is 48. Find them so that their product is maximum
 - (b) Each side of a cube is increased by 3%. Find the approximate percentage increase in its volume. Also find the approximate percentage increase in its surface area

* * *

/6052