6052

BOARD DIPLOMA EXAMINATION
 JUNE - 2019
 COMMON FIRST YEAR EXAMINATION
 ENGINEERING MATHEMATICS - I

Time: 3Hours
Max. Marks : 80

$$
P A R T-A \quad 10 \times 3=30
$$

Instructions:

- Answer ALL questions and each question carries THREE marks
- Answers should be brief and straight to the point and shall not exceed FIVE simple sentences
(1) Resolve $\frac{2 x^{2}+3 x+4}{\left(x^{2}+2\right)(x-1)}$ into Partial Fractions
(2) Find the determinant of the matrix $\left[\begin{array}{ccc}1 & -2 & -1 \\ 1 & -1 & -1 \\ 2 & 3 & 2\end{array}\right]$
(3) Show that $\left|\begin{array}{cc}1 & \omega \\ \omega^{2} & 1\end{array}\right|=0$ where ω is a complex cube root of unity
(4) Prove that $\frac{\cos 7 A}{\sec A}-\frac{\sin 7 A}{\operatorname{cosec} A}=\cos 8 A$
(5) Show that $\cos ^{6} A+\sin ^{6} A=1-\frac{3}{4} \sin ^{2} 2 A$
(6) Find the real and imaginary of parts of the complex number $\frac{2+i}{3+i}$
(7) Find the equation of line passing through the point $(-3,4)$ and having inclination $\frac{\pi}{4}$
(8) Find the angle between the lines $y-\sqrt{3} x-5=0$ and $\sqrt{3} y-x+6=0$
(9) Evaluate $\lim _{x \rightarrow 2}\left(\frac{x^{3}-8}{x^{5}-32}\right)$
(10) Find the derivative of $x^{3} \tan ^{-1} x$ with respect to x

$$
P A R T-B
$$

$$
5 \times 10=50
$$

Instructions:

- Answer ANY FIVE questions and each question carries TEN marks
- The answers should be comprehensive and criteria for valuation is the content but not the length of the answer
(11) (a) Solve the equations $2 x-3 y+z+1=0, x+4 y-2 z-3=0$ and $4 x-y+3 z-11=0$ by Crammer's Rule
(b) Find the adjoint of the matrix $\left[\begin{array}{ccc}-4 & -3 & -3 \\ 1 & 0 & 1 \\ 4 & 4 & 3\end{array}\right]$
(12) (a) Prove that $\sin 85^{\circ}-\sin 35^{\circ}-\cos 65^{\circ}=0$
(b) If $\operatorname{Cot}^{-1}\left(\frac{1}{x}\right)+\operatorname{Cot}^{-1}\left(\frac{1}{y}\right)+\operatorname{Cot}^{-1}\left(\frac{1}{z}\right)=\frac{\pi}{2}$ then show that $x y+y z+z x=1$
(13) (a) Solve the equation $\sin x+\sqrt{3} \cos x=\sqrt{2}$
(b) In a $\Delta^{l e} A B C$ if $a=4, b=5, c=7$ then find the value of $\cos \left(\frac{B}{2}\right)$
(14) (a) Find the equation of the Circle whose center is at the point (1, 2) and radius is 5 units
(b) Find the center, vertices, eccentricity, foci and length of latus rectum of the Ellipse $\frac{x^{2}}{9}+\frac{y^{2}}{4}=1$
(15) (a) Find $\frac{d y}{d x}$, if $y=\tan ^{-1}\left(\frac{2 x}{1-x^{2}}\right)$
(b) Find $\frac{d y}{d x}$ if $y=x^{x}$
(16) (a) Find $\frac{d^{2} y}{d x^{2}}$, if $x=b \sec ^{2} \theta, y=a \tan ^{2} \theta$
(b) Find $\frac{\partial^{2} u}{\partial x \partial y}$ and $\frac{\partial^{2} u}{\partial y \partial x}$ if $u(x, y)=x^{3}+3 x y+y^{3}$
(17) (a) Find the equations of tangent and normal to the curve $y=x^{2}+1$ at (1, 2)
(b) A particle moves along $s=60 t-16 t^{2}$ where s is in feet and t in seconds. Find the distance travelled by the particle before it first comes to rest
(18) (a) Find the maximum and minimum values of $f(x)=2 x^{3}-9 x^{2}+12 x+15$
(b) The pressure P and volume V of a gas are connected by the relation $P V^{1.4}=$ constant. Find the percentage increase in P if V is decreased by 1%

