

C16-M/CHOT/RAC-102

6052

BOARD DIPLOMA EXAMINATION, (C-16) SEPTEMBER/OCTOBER - 2020 DME—FIRST YEAR EXAMINATION

ENGINEERING MATHEMATICS—I

Time: 3 hours [Total Marks: 80

PART—A

 $3 \times 10 = 30$

Instructions: (1) Answer **all** questions.

- (2) Each question carries three marks.
- 1. Resolve $\frac{1}{(x-2)(x-4)}$ into partial fractions.
- **2.** If $A = \begin{pmatrix} 9 & 1 \\ 4 & 3 \end{pmatrix}$, and $B = \begin{pmatrix} 1 & 5 \\ 6 & 11 \end{pmatrix}$, then find X such that 3A = 5B = 2X = 0.
- **3.** Evaluate $A A^T$, if $A \begin{bmatrix} 2 & 4 \\ 5 & 3 \end{bmatrix}$.
- **4.** If $A B 45^{\circ}$, then prove that $(1 \tan A)(1 \tan B) 2$.
- **5.** Prove that $\frac{\sin 2A}{1 \cos 2A}$ cot A.
- **6.** Find the modulus of the complex number $\frac{(3 + i)(2 + 3i)}{(5 + 7i)}$.

/6052 1 [Contd...

- **7.** Find the equation of the line passing through the points (1, 2) and (3, 5).
- **8.** Find the perpendicular distance from (1, 3) to the line 2x 3y 3 0.
- **9.** Evaluate $\lim_{x \to 0} \frac{1 \cos x}{x^2}$.
- **10.** Find $\frac{dy}{dx}$, if $y = e^{2x} \log x$.

PART—B

 $10 \times 5 = 50$

Instructions: (1) Answer any **five** questions.

- (2) Each question carries ten marks.
- **11.** (a) Solve the equations x 2y z 4, 3x y 2z 3 and 2x 3y z 3 by Cramer's rule.
 - (b) If $A = \begin{pmatrix} 1 & 2 \\ 3 & 1 \end{pmatrix}$, then show that $A^2 = 2A = 5I = 0$. Hence find A^{-1} .
- **12.** (a) Show that $\sin A \sin(120^{\circ} A) \sin(120^{\circ} A) 0$.
 - (b) If $\tan^{-1} x + \tan^{-1} y + \tan^{-1} z = \frac{\pi}{2}$, then show that xy + yz + zx = 1
- **13.** (a) Solve cos 2 cos 8 cos 5.
 - (b) In a triangle ABC, if C 60°, then prove that $\frac{a}{b}$ $\frac{b}{c}$ $\frac{b}{a}$ 1.
- **14.** (a) Find the equation of the circle passing through the points (0, 0), (2, 0) and (0, 4).
 - (b) Find the equation of the parabola whose focus is (1, 1) and equation of directrix is 2x + 3y + 7 = 0.

/**6052** 2 [Contd...

- **15.** (a) Differentiate $\cos(\log(\sin 2x))$ with respect to x.
 - (b) If $y = \sqrt{x} = \sqrt{x} = \sqrt{x} = \frac{dy}{dx}$, then find $\frac{dy}{dx}$.
- **16.** (a) If $x = a \cos^3 , y = b \sin^3 , \text{ find } \frac{dy}{dx}, d^2y / dx^2.$
 - (b) Verify Euler's theorem $f(x, y) = x^2 xy y^2$.
- **17.** (a) Find the equations of the tangent and normal to the curve $y x^2 3x 2$ at (3, 2).
 - (b) All edges of a cube are expending at a rate of 1 cm/sec upon heating. Calculate the rate of increase of its volume and surface area when edge is 10 cm long.
- **18.** (a) Show that the semi-vertical angle of the cone of maximum volume and of given slant height is $\tan^{-1} \sqrt{2}$.
 - (b) Find the approximate value of $\sqrt{17}$ using differentiation.

* * *

/6052 3 AA20—PDF