

C16-M-102/C16-CHOT-102/C16-RAC-102

6052

BOARD DIPLOMA EXAMINATION, (C-16) OCT/NOV—2017
 DME-FIRST YEAR EXAMINATION

ENGINEERING MATHEMATICS-I
Time : 3 hours]
Total Marks : 80

PART—A
$3 \times 10=30$
Instructions : (1) Answer all questions.
(2) Each question carries three marks.

1. Resolve $\frac{x-1}{(x-2)(x+3)}$ into partial fractions.
2. If $A=\left|\begin{array}{rr}3 & 2 \\ 1 & -6\end{array}\right|$ and $B=\left|\begin{array}{ll}-4 & 1 \\ -2 & 5\end{array}\right|$, find $A B$.
3. Evaluate $\left|\begin{array}{lll}3 & 1 & 1 \\ 1 & 3 & 1 \\ 1 & 1 & 3\end{array}\right|$.
4. Prove that $\cos ^{2} 45^{\circ}-\sin ^{2} 15^{\circ}=\frac{\sqrt{3}}{4}$.
5. Prove that $\frac{\sin 2 \theta}{1-\cos 2 \theta}=\cot \theta$.
6. Express $-\sqrt{3}+i$ in modulus-amplitude form.
7. Find the distance between the parallel lines $3 x-4 y-3=0$ and $6 x-8 y-1=0$.
8. Find the angle between the lines $2 x+y-3=0$ and $x-y-2=0$.
9. Evaluate $\lim _{x \rightarrow 2} \frac{x^{2}+x-6}{x^{2}-5 x+6}$.
10. Differentiate $\sqrt{\tan 2 x}$ w.r.t. x.

> PART—B
$10 \times 5=50$
Instructions : (1) Answer any five questions.
(2) Each question carries ten marks.
11. (a) Show that $\left|\begin{array}{lll}a & a^{2} & 1 \\ b & b^{2} & 1 \\ c & c^{2} & 1\end{array}\right|=(a-b)(b-c)(c-a)$.
(b) Solve the following equations by using Cramer's rule :

$$
x+2 y+z=4,3 x+y+2 z=3 \text { and } 2 x-3 y-z=-3
$$

12. (a) Prove that $8 \cos 20^{\circ} \cos 40^{\circ} \cos 80^{\circ}=1$.
(b) Prove that $\tan ^{-1}\left(\frac{2}{7}\right)+\cot ^{-1}(5)=\tan ^{-1}\left(\frac{17}{33}\right)$.
13. (a) Solve $2 \sin ^{2} \theta-\cos \theta-1=0$.
(b) In $\triangle A B C$, prove that $b \cos ^{2} \frac{C}{2}+c \cos ^{2} \frac{B}{2}=S$.
14. (a) Find the centre and radius of the circle $2 x^{2}+2 y^{2}-3 x-7 y+2=0$
(b) Find the equation of the rectangular hyperbola whose focus is the point $(1,-3)$ and directrix $2 x-y+1=0$.
15. (a) Find the derivative of $e^{\cot ^{-1} x}$ w.r.t.tan $\tan ^{-1} x$.
(b) Differentiate $x^{\cos x}$ w.r.t. x.
16. (a) If $y=a \cos (\log x)+b \sin (\log x)$, prove that $x^{2} y_{2}+x y_{1}+y=0$.
(b) If $U=\sin ^{-1}\left(\frac{x^{2}+y^{2}}{x-y}\right)$, prove that $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=\tan u$.
[Contd...
17. (a) Find the equations of tangent and normal to the curve $x=a(\theta+\sin \theta), y=a(1+\cos \theta)$ at $\theta=\frac{\pi}{6}$.
(b) The radius of a sphere is decreasing at the rate of $0.1 \mathrm{~cm} / \mathrm{sec}$. Find the rate at which its volume is decreasing when the radius is 20 cm .
18. (a) Find the dimensions of the rectangle of maximum area having a perimeter of 32 ft .
(b) The time period T of a complete oscillation of a simple pendulum of length L is given by the equation $T=2 \pi \sqrt{\frac{L}{g}}$, where g is a constant. Find the approximate percentage error in the calculated value of T corresponding to an error 3% in the value of L.
