C16-M/Снот/RAC-102

6052

BOARD DIPLOMA EXAMINATION, (C-16) OCTOBER-2020 DME-FIRST YEAR EXAMINATION

ENGINEERING MATHEMATICS—I

PART—A

$3 \times 10=30$
Instructions : (1) Answer all questions.
(2) Each question carries three marks.

1. Resolve $\frac{2}{(x+3)(x+4)}$ into partial fractions.
2. If $A=\left[\begin{array}{rr}1 & -3 \\ 2 & 1\end{array}\right]$, then find $A^{2}-3 A+2 I$ where I, is a unit matrix of order 2.
3. Evaluate $\left|\begin{array}{rrr}1 & 0 & -2 \\ 3 & -1 & 2 \\ 4 & 5 & 6\end{array}\right|$, using Laplace expansion.
4. Prove that, $\frac{\cos 19^{\circ}-\sin 19^{\circ}}{\cos 19^{\circ}+\sin 19^{\circ}}=\tan 26^{\circ}$.
5. Prove that, $\frac{1-\cos \theta+\sin \theta}{1+\cos \theta+\sin \theta}=\tan \left(\frac{\theta}{2}\right)$.
6. Find the modulus amplitude form of the complex number $-1-i$.
7. Find the equation of the line which makes intercepts -4 with x-axis and 1 with y-axis.
8. Find the equation of the straight line passing through the point $(-4,3)$ and perpendicular to the line $3 x+y-31=0$.
9. Evaluate $\lim _{x \rightarrow 5}\left(\frac{x^{2}-25}{x^{3}-125}\right)$.
10. Find the derivative of $\tan x \log x$ with respect to x.

PART-B

$10 \times 5=50$
Instructions : (1) Answer any five questions.
(2) Each question carries ten marks.
11. (a) Solve the equations $x+2 y+3 z=6, \quad 3 x-2 y+z=2$ and $4 x+2 y+z=7$ by Crammer's Rule.
(b) Find the adjoint of the matrix $\left[\begin{array}{ccc}\cos \theta & \sin \theta & 0 \\ -\sin \theta & \cos \theta & 0 \\ 0 & 0 & 1\end{array}\right]$.
12. (a) Prove that, $\sin A+\sin \left(120^{\circ}+A\right)-\sin \left(120^{\circ}-A\right)=0$.
(b) Prove that, $2 \tan ^{-1}\left(\frac{1}{3}\right)+\tan ^{-1}\left(\frac{1}{7}\right)=\frac{\pi}{4}$.
13. (a) Solve the equation $(2 \cos \theta+1)(\cos \theta-1)=0$.
(b) In a $\triangle A B C$, prove that $(b+c) \sin \left(\frac{A}{2}\right)=a \cos \left(\frac{B-C}{2}\right)$.
14. (a) Find the equation of the circle whose center is at the point $(-3,2)$ and radius is 4 units.
(b) Find the equation of the rectangular hyperbola whose focus is at the point $(1,2)$ and directrix is the line $3 x+4 y-5=0$.
15. (a) Find $\frac{d y}{d x}$, if $y=\sin ^{-1}\left(3 x-4 x^{3}\right)$.
(b) Find $\frac{d y}{d x}$, if $x^{3}+y^{3}=6 x y$.
16. (a) Find $\frac{d^{2} y}{d x^{2}}$, if $x=36(\theta-\sin \theta), y=36(1-\cos \theta)$.
(b) If $u(x, y)=\frac{x y}{x+y}$, then show that $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=u$.
17. (a) Find the equations of tangent and normal to the curve $y=x^{3}-3 x^{2}-x+5$, at the point $(1,2)$.
(b) The displacement s of a particle is given at any time t by the relation $s=2 t^{3}-3 t^{2}+15 t+18$. Find its velocity when the acceleration is 0 .
18. (a) Find the maximum and minimum values of $f(x)=x^{3}-6 x^{2}+9 x+1$
(b) The side of a square plate is increased by $0 \cdot 1 \%$. Find the approximate percentage increase in its area.

