

C16-M-301/C16-CHOT-301/C16-RAC-301

6242

BOARD DIPLOMA EXAMINATION, (C-16) OCT/NOV-2017 DMET-THIRD SEMESTER EXAMINATION

ENGINEERING MATHEMATICS—II

Time: 3 hours [Total Marks: 80

PART—A

 $3 \times 10 = 30$

Instructions: (1) Answer all questions.

- (2) Each question carries three marks.
- 1. Evaluate:

$$\frac{e^{\sin^{-1}x}x}{\sqrt{1-x^2}}dx$$

2. Evaluate:

$$\frac{1}{\sqrt{9} \quad x^2} dx$$

3. Evaluate:

$$\int_{0}^{\sqrt{3}} \frac{1}{1-x^2} dx$$

4. Find the mean value of $y^2 - 4x$ from x - 0 to x - 4.

/6242 1 [Contd...
www.ManaResults.co.in

- **5.** Find $L\{t^4 e^{2t} 2\sin 2t\}$
- **6.** Find $L^{-1} = \frac{3S 2}{S^2 9}$
- **7.** Find the Fourier coefficient a_0 in f(x) x in the interval (0, 2).
- **8.** Find the differential equation of the family of curves $y A \cos 5x B \sin 5x$, where A, B are arbitrary constants.
- **9.** Solve:

$$\frac{dy}{dx}$$
 e^{x} y

10. Solve :

$$\frac{d^2y}{dx^2}$$
 4y 0

 $10 \times 5 = 50$

Instructions: (1) Answer any five questions.

- (2) Each question carries ten marks.
- (3) Answers should be comprehensive and the criterion for valuation is the content but not the length of the answer.
- **11.** (a) Evaluate:

$$\frac{1}{x^2 + 6x + 13} dx$$

(b) Evaluate:

$$\cos^3 \sin^6 x \, dx$$

12. (a) Evaluate:

$$x^3 \sin 5x \, dx$$

/6242 2 [Contd...
www.ManaResults.co.in

$$\int_0^{2} \log \cot x \, dx$$

- **13.** (a) Find the volume of the solid generated by revolving the area bounded by the circle x^2 y^2 16 about x-axis.
 - (b) Find the RMS value of f(x) xe^x from x = 1 to x = 3.

14. (a) Evaluate

$$\int_{0}^{6} \frac{1}{1 + x^{2}} dx$$

using Simpson's rule by taking n 6.

$$L\{e^{-2t}(3\sin 4t - 4\cos 4t)\}$$

$$L^{-1} = \frac{5S - 1}{(S - 2)(S - 1)}$$

(b) Using convolution theorem, find

$$L^{-1} \frac{1}{S(S^2 - 4)}$$

16. Find the Fourier series for f(x) x x^2 in the interval [,].

$$\frac{dy}{dx} = \frac{y}{x} \tan \frac{y}{x}$$

(b) Solve:

$$\frac{dy}{dx}$$
 $y \cot x$ $\csc x$

$$(D^2 \quad 4)y \quad \sin 2x$$

$$(D^2 \quad 3D \quad 2)y \quad x$$

* * *