BOARD DIPLOMA EXAMINATIONS

COMMON-THIRD SEMESTER

OCT/NOV-2019

ENGINEERING MATHEMATICS - II
Time: 3 hours
Max. Marks: 80

$$
\text { PART - A } \quad \mathbf{3} \times 10=30
$$

Instructions: 1. Answer all questions.
2. Each question carries Three Marks.
3. Answer should be brief and straight to the point and should not exceed Five simple sentences.

1. Evaluate $\int\left(\sec x \tan x-5 \operatorname{cosec}^{2} x\right) d x$
2.

Evaluate $\int \frac{e^{\sin ^{-1} \mathrm{x}}}{\sqrt{1-\mathrm{x}^{2}}} d x$
3. Evaluate $\int_{0}^{1} \frac{x^{2}-1}{x^{4}-1} d x$
4. Find the mean value of $f(x)=x^{3}+x$ over the interval $[0,1]$
5. Find $L\left\{\sin ^{2} 2 t\right\}$
6. Find $L^{-1}\left\{\frac{s-2}{(s-2)^{2}+4}\right\}$
7.

Find the value of a_{0} in the Fourier Series expansion of function
$f(x)=\frac{x}{2}$ in the interval $(-\pi, \pi)$
www.manaresults.co.in
8. Find the order and degree of the Differential Equation

$$
x^{2}\left(\frac{d^{2} y}{d x^{2}}\right)^{3}+2 y\left(\frac{d y}{d x}\right)^{4}+y^{4}=0
$$

9. Find the Integrating Factor of the differential equation

$$
\frac{d y}{d x}+\frac{y}{x}=\frac{1}{x^{5}}
$$

10. Find the complementary function of the differential equation
$\left(D^{2}-2 \mathrm{D}+1\right) \mathrm{y}=4 e^{3 \mathrm{x}}$
PART - B
$5 \times 10=50$

Instructions: 1. Answer any Five questions
 2. Each question carries TEN Marks.
 3. Answer should be comprehensive and a criterion for valuation is the content but not the length of the answer.

11.

a) Evaluate $\int\left(\frac{1}{3 x^{2}+2 x+5}\right) d x$
b) Evaluate $\int\left(\frac{3 x+1}{x^{5}+2 x-3}\right) d x$
12.
a) Evaluate $\int e^{\mathrm{X}}\left(\frac{1+x \log x}{x}\right) d x$
b) Evaluate $\int_{0}^{1} x\left(\frac{1-x^{2}}{1+x^{2}}\right) d x$
13. (a) Find the RMS value of $y=\sqrt{8-3 x^{2}}$ between $x=0$ to $x=2$
(b) Find the volume of the solid of revolution formed by rotating one arch of the curve $y=\sin x$ about x-axis between $x=0$ and $x=\pi$.
WWW.manaresults.co.in
14. a) Apply Simpson's rule to find the approximate area bounded by x axis, between the lines $x=1$ and $x=4$ and the curve through the points

$\mathrm{x}=$	1	1.5	2	2.5	3	3.5	4
$\mathrm{y}=$	2	2.4	2.7	2.8	3	2.6	2.1

b) Find $\mathrm{L}\left\{\frac{e^{t}=\frac{e^{-2 t}}{t}}{t}\right.$
15. a) Find $\mathrm{L}^{-1}\left\{\frac{s-5}{s(s+3)}\right\}$
b) using Convolution theorem Find $\mathrm{L}^{-1}\left\{\frac{1}{(\mathrm{~s}+1)(1-s)}\right\}$
16. Expand $f(x)=2-x, 0<x<2 \pi$ in Fourier series
17. (a)Solve $\frac{d y}{d x}=\frac{\mathrm{y}}{\mathrm{x}}+\sin \left(\frac{\mathrm{y}}{\mathrm{x}}\right)$
(b) solve $\frac{d y}{d x}-y \tan x=\mathrm{e}^{\mathrm{x}}$
18.

Solve the following differential equations
(a) $\left(D^{3}-1\right) y=0$, where $D=\frac{d}{d x}$
(b) $\left(D^{2}+36\right) y=\sin ^{2} x$, , where $D=\frac{d}{d x}$

