C-16-M/CHOT/RAC-301

6242

BOARD DIPLOMA EXAMINATIONS

COMMON-THIRD SEMESTER

OCT/NOV-2019

ENGINEERING MATHEMATICS - II

Time: 3 hours

Max. Marks: 80

$PART - A \qquad \qquad 3 X 10 = 30$

- Instructions: 1. Answer all questions.
 - 2. Each question carries Three Marks.
 - 3. Answer should be brief and straight to the point and should not exceed Five simple sentences.
- ^{1.} Evaluate $\int (\sec x \tan x 5 \csc^2 x) dx$
- 2. Evaluate $\int \frac{e^{\sin^{-1}x}}{\sqrt{1-x^2}} dx$
- 3. Evaluate $\int_0^1 \frac{x^2 1}{x^4 1} dx$
- ^{4.} Find the mean value of $f(x) = x^3 + x$ over the interval [0, 1]
- 5. Find $L\{sin^2 2t\}$

^{6.} Find
$$L^{-1} \left\{ \frac{s-2}{(s-2)^2+4} \right\}$$

7.

Find the value of a_0 in the Fourier Series expansion of function

$$f(x) = \frac{x}{2}$$
 in the interval $(-\pi, \pi)$

[Cont..,

www.manaresults.co.in

^{8.} Find the order and degree of the Differential Equation

$$x^{2} \left(\frac{d^{2}y}{dx^{2}}\right)^{3} + 2y \left(\frac{dy}{dx}\right)^{4} + y^{4} = 0$$

^{9.} Find the Integrating Factor of the differential equation $\frac{dy}{dx} + \frac{y}{x} = \frac{1}{x^5}$

^{10.} Find the complementary function of the differential equation

$$(D^2 - 2D + 1) y = 4e^{3x}$$

PART – B $5 \ge 10 = 50$

- 2. Each question carries **TEN** Marks.
- *3.* Answer should be comprehensive and a criterion for valuation is the content but not the length of the answer.

11.

a) Evaluate
$$\int \left(\frac{1}{3x^2 + 2x + 5} \right) dx$$

b) Evaluate
$$\int \left(\frac{3x+1}{x^5+2x-3} \right) dx$$

12.

a) Evaluate
$$\int e^{X} \left(\frac{1 + x \log x}{x} \right) dx$$

b) Evaluate
$$\int_0^1 x \left(\frac{1-x^2}{1+x^2} \right) dx$$

^{13.} (a) Find the RMS value of $y = \sqrt{8 - 3x^2}$ between x = 0 to x = 2

(b) Find the volume of the solid of revolution formed by rotating one arch of the curve y = sin x about *x*-axis between x = 0 and $x = \pi$.

www.manareŝults.co.in [Cont.,

^{14.} a) Apply Simpson's rule to find the approximate area bounded by x-

axis, between the lines x	$= 1$ and $\mathbf{r} = 4$ and	the curve	through the points
unis, between the mics x	-1 and $\lambda = 1$ and		unough the points

x =	1	1.5	2	2.5	3	3.5	4
y=	2	2.4	2.7	2.8	3	2.6	2.1

b) Find L{ $\frac{e^t = e^{-2t}}{t}$ }

^{15.} a) Find L⁻¹ {
$$\frac{s-5}{s(s+3)}$$
 }

b) using Convolution theorem Find $L^{-1}\left\{\frac{1}{(s+1)(1-s)}\right\}$

^{16.} Expand f(x) = 2 - x, $0 < x < 2\pi$ in Fourier series

^{17.} (a)Solve
$$\frac{dy}{dx} = \frac{y}{x} + \sin(\frac{y}{x})$$

(b) solve $\frac{dy}{dx} - y \tan x = e^x$

18.

Solve the following differential equations

(a)(
$$D^3 - 1$$
)y = 0, where $D = \frac{d}{dx}$
(b)($D^2 + 36$)y = $sin^2 x$, , where $D = \frac{d}{dx}$

www.manaresults.co.in