6243

BOARD DIPLOMA EXAMINATION, (C-16)
JUNE/JULY—2022
DME - THIRD SEMESTER EXAMINATION
STRENGTH OF MATERIALS
Time : 3 hours]
[Total Marks : 80
PART—A
$3 \times 10=30$
Instructions : (1) Answer all questions.
(2) Each question carries three marks.
(3) Answers should be brief and straight to the point and shall not exceed five simple sentences.

1. A steel rod 2 m long is fixed rigidly at the ends and heated through a temperature of $100{ }^{\circ} \mathrm{C}$. Find the stress induced in the rod, if $\alpha_{s}=12 \times 10^{-6}$ per ${ }^{\circ} \mathrm{C}$ and $E_{s}=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$.
2. Write the relation between the three elastic constants.
3. Calculate the elastic strain energy per unit volume due to extension of a steel bar having an elastic limit of $200 \mathrm{~N} / \mathrm{mm}^{2}$ and $E_{s}=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$.
4. A thin cylindrical shell is subjected to internal fluid pressure. How is the circumferential stress related to the longitudinal stress?
5. A simply supported beam of 2 m long carries a point load of 5 kN at the midpoint. Draw the shear force and bending moment diagrams.
6. Find the section modulus of a hollow circular cross-section of external diameter 200 mm and thickness 25 mm .
7. A cantilever 1 m long of section 100 mm wide $\times 150 \mathrm{~mm}$ deep carries a concentrated load of 50 kN at free end. Find the deflection at free end. Take $E=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$.
8. Write the torsion equation for shafts.
9. A solid shaft of diameter 10 mm is subjected to a torque of 18 Nm . Find the angle of twist over a length of 250 mm . Take $G=0.8 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$.
10. Define the term 'stiffness' in springs.

PART—B
$10 \times 5=50$

Instructions: (1) Answer any five questions.
(2) Each question carries ten marks.
(3) Answers should be comprehensive and criterion for valuation is the content but not the length of the answer.
11. A mild steel tube of internal diameter 20 mm and thickness 5 mm is tightly fitted inside a hollow copper tube of equal thickness. The ends of both the tubes are brazed together and the composite bar is subjected to an axial pull of 40 kN . E for steel and copper are $2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$ and $1 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$ respectively. Find the stresses developed in both the materials.
12. A bar of 10 mm diameter gets stretched by 3 mm under a steady load of 7.5 kN . What stress would be produced in the same bar by a weight of 750 N , which falls vertically through a distance of 75 mm on to a rigid collar attached to its end? The bar is initially unstressed. Take $E=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$.
13. A cylindrical shell 4 m long, 1 m diameter and 12 mm thickness is subjected to an internal pressure of $1.5 \mathrm{~N} / \mathrm{mm}^{2}$. Calculate the longitudinal and hoop stresses, changes in diameter, length and volume. Take $E=2 \times 10 \mathrm{~N} / \mathrm{mm}^{2}, \frac{1}{m}=03$.
14. Draw shear force and bending moment diagrams for a beam 10 m long with equal overhangs of 2 m carrying a uniformly distributed load of $1 \mathrm{~N} / \mathrm{m}$ over its length.
15. A beam of symmetrical I-section is simply supported over a span of 9 m . The total depth of section is 220 mm . If the maximum stress is not to exceed $80 \mathrm{~N} / \mathrm{mm}^{2}$; what is the concentrated load that can be carried at the middle of the span? Assume MI about neutral axis as $2706 \times 10^{4} \mathrm{~mm}^{4}$.
16. A cantilever 1.8 m long carries two loads each ' W ', of which one is at the free end and the other at 1.2 m from fixed end. Moment of inertia of the cantilever section is $20 \times 10^{5} \mathrm{~mm}^{4}$. Calculate the value of 'W' to give a maximum deflection of 8 mm . Take $\mathrm{E}=200 \mathrm{GPa}$.
17. Determine the maximum torque that can be applied to a hollow circular steel shaft of 100 mm outside diameter and 80 mm inside diameter without exceeding a shear stress of 65 MPa or a twist of 2° over a length of 4 m . Take $G=80 \mathrm{GPa}$.
18. A carriage spring of 750 mm length is built up of plates 70 mm wide and 8 mm thick. How many plates are necessary to support a central load of $10^{4} \mathrm{~N}$ without exceeding the stress of $160 \mathrm{~N} / \mathrm{mm}^{2}$? Find out central deflection. Take $E=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$.

