6243

BOARD DIPLOMA EXAMINATION, (C-16)
OCTOBER/NOVEMBER—2023

DME - THIRD SEMESTER EXAMINATION

STRENGTH OF MATERIALS

Time : 3 Hours]
[Total Marks : 80
PART—A
Instructions: (1) Answer all questions.
(2) Each question carries three marks.
(3) Answers should be brief and straight to the point and shall not exceed five simple sentences.

1. State Hooke's law and define Poisson's ratio.
2. A steel bar of 30 mm diameter is subjected to an axial load of 20 kN . Find the stress in the bar.
3. A tensile load of 60 kN is suddenly applied to a circular bar of 40 mm diameter and 5 m long. If the value of $E=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$. Determine the strain energy absorbed by the rod.
4. A boiler shell of 1000 mm diameter and 10 mm thick plate having the efficiency of longitudinal joint is 70%. Determine the minimum tensile stress induced in the shaft, when the internal pressure of $2 \mathrm{~N} / \mathrm{mm}^{2}$.
5. List out the types of beams.
6. Write the assumptions made in theory of simple bending.
7. A cantilever beam of length 7 m is carrying a point load of 16 kN . Calculate the deflection at the free end if moment of inertia $I=85 \times 10^{7} \mathrm{~N} / \mathrm{mm}^{4}$ and $E=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$.
8. Find the power transmitted by a circular shaft of 60 mm diameter at 150 rpm considering the maximum shear stress in the shaft is not to exceed $65 \mathrm{~N} / \mathrm{mm}^{2}$.
9. Write the assumptions made in deriving torsion equation.
10. Define the terms (a) spring index and (b) spring stiffness.

PART—B
$10 \times 5=50$

Instructions: (1) Answer any five questions.
(2) Each question carries ten marks.
(3) Answers should be comprehensive and criterion for valuation is the content but not the length of the answer.
11. A short column of $400 \mathrm{~mm} \times 400 \mathrm{~mm}$ section is to consist of concrete reinforced with steel rods of 20 mm diameter with compressive load of 3 MN . How many reinforcing steel rods are required if stress in concrete is not to exceed $2 \mathrm{~N} / \mathrm{mm}^{2}$ and $E_{s}=12$ times that of concrete.
12. A bar of 3 m long and 50 mm diameter hangs vertically has a collar securely attached at the lower end. Find the maximum stress induced. When (a) a weight of 250 N falls from 120 mm on to the collar and (b) a weight of 2500 N falls from 10 mm on to the collar. Take $\mathrm{E}=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$.
13. Derive an expression for hoop stress on thin cylindrical shell.
14. A simply supported beam 9 m long is carrying a U.D.L of $10 \mathrm{kN} / \mathrm{m}$ over a length of 6 m from right end. Draw the S.F and B.M diagrams for the beam and also calculate the maximum B.M on the section. Take $G=0.85 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$.
15. A simply supported beam with a central point load on a span of 4 m and the maximum bending stress is $8 \mathrm{~N} / \mathrm{mm}^{2}$. What is the maximum deflection when the moment of resistance is $16 \mathrm{kN}-\mathrm{m}$? Assume $I=4 \times 10^{8} \mathrm{~mm}^{4}$ and $E=0.2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$.
16. A closed coiled helical spring of 120 mm diameter is made up of 8 mm diameter wire is subjected to a load of 300 N. Determine the shear stress induced in the wire and energy stored, if the spring is wound for 20 turns. Take $G=0.8 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$.
17. A beam of length of 5 m it has an inverted T-section with $100 \mathrm{~mm} \times 20 \mathrm{~mm}$ flange and $100 \mathrm{~mm} \times 20 \mathrm{~mm}$ web. It is simply supported at the ends and carries a uniformly distributed load of $2 \mathrm{kN} / \mathrm{m}$. Calculate the maximum tensile and compressive stress.
18. (a) State any five assumptions made in deriving torsion equation.
(b) A solid shaft of diameter 10 mm is subjected to a torque of $15 \mathrm{~N}-\mathrm{m}$. Calculate the angle of twist over a length of 250 mm . Take $G=0.8 \times 10^{5} \mathrm{~N} / \mathrm{mm} 2$.

