

с16-м-303

6244

BOARD DIPLOMA EXAMINATION, (C-16) MARCH/APRIL-2018 DME-THIRD SEMESTER EXAMINATION

THERMAL ENGINEERING-I

Time : 3 hours] [Total Marks : 80

PART—A

$3 \times 10=30$
Instructions : (1) Answer all questions.
(2) Each question carries three marks.
(3) Answers should be brief and straight to the point and shall not exceed five simple sentences.
(4) Assume data wherever necessary.

1. State Boyle's law and Charles' law.
2. Define thermodynamic system and state its classification.
3. Distinguish between heat and work.
4. Represent the following processes on T-S diagram :
(a) Constant pressure process
(b) Isentropic process
(c) Isothermal process
5. 2 kg of air expands isothermally from a volume of $1.0 \mathrm{~m}^{3}$ to a volume of $5 \mathrm{~m}^{3}$. Find the change in entropy. Assume $R=0.287 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}$.
6. An engine working on Carnot cycle has maximum and minimum temperatures are $1310^{\circ} \mathrm{C}$ and $320^{\circ} \mathrm{C}$. Determine its efficiency.
7. Write the functions of carburettor in IC engine.
8. List out the different methods of governing systems in IC engines.
9. Define the following terms :
(a) Mechanical efficiency
(b) Brake thermal efficiency
(c) Relative efficiency
10. Mention any three advantages of multistage compression method.

PART-B
$10 \times 5=50$
Instructions : (1) Answer any five questions.
(2) Each question carries ten marks.
(3) Answers should be comprehensive and the criterion for valuation is the content but not the length of the answer.
(4) Assume data wherever necessary for air $R=0.287 \mathrm{~kJ} / \mathrm{kgK}$ and $\gamma=1 \cdot 4$, if not specified.
11. A mass of air has an initial pressure of $1.3 \mathrm{MN} / \mathrm{m}^{2}$, volume $0.014 \mathrm{~m}^{3}$ and temperature $135^{\circ} \mathrm{C}$. It is expanded until its final pressure is $275 \mathrm{kN} / \mathrm{m}^{2}$ and its volume becomes $0.056 \mathrm{~m}^{3}$.
Determine-
(a) the mass of air;
(b) the final temperature of air.

Take $R=0.287 \mathrm{~kJ} / \mathrm{kgK}$.
12. A mass of an ideal gas has initial temperature of $16^{\circ} \mathrm{C}$. If the temperature is raised to $280^{\circ} \mathrm{C}$, find the change of internal energy and enthalpy. Assume specific heat at constant pressure $1.005 \mathrm{~kJ} / \mathrm{kgK}$ and specific heat at constant volume $0.718 \mathrm{~kJ} / \mathrm{kgK}$.

$$
5+5=10
$$

13. (a) State the limitations of first law of thermodynamics.
(b) Fluid with a specific enthalpy of $2800 \mathrm{~kJ} / \mathrm{kg}$ enters a horizontal nozzle at the rate of $14 \mathrm{~kg} / \mathrm{sec}$. At the outlet from the nozzle, the specific enthalpy is $2250 \mathrm{~kJ} / \mathrm{kg}$. Neglecting initial velocity, determine the exit velocity of the fluid.
14. (a) Write a short note on throttling process.
(b) A perfect gas is compressed according to the law $P V^{1 \cdot 25}=$ constant from initial pressure of 1 bar and volume of $0.9 \mathrm{~m}^{3}$ to a final volume of $0.6 \mathrm{~m}^{3}$. Determine the final pressure and change of entropy per kg of gas during the process. Take $\gamma=1.4$ and $R=0.287 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}$.
15. In an ideal Otto cycle, the air at the beginning of isentropic compression is 1 bar and $15^{\circ} \mathrm{C}$. The ratio of compression is 8 . The heat added is $1008 \mathrm{~kJ} / \mathrm{kg}$ during constant volume process. Take $\gamma=1.4$ and $C_{v}=0.714 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}$. Determine-
(a) the maximum temperature in the cycle;
(b) the air standard efficiency;
(c) the work done per kg of air;
(d) the heat rejected per kg of air.
16. Explain the working of 4 -stroke diesel engine with neat sketch.
17. The percentage composition of a sample of fuel by mass is found to be $\mathrm{C}=76 \%, \mathrm{H}_{2}=5 \cdot 2 \%, \mathrm{O}_{2}=12 \cdot 8 \%, \mathrm{~N}_{2}=2 \cdot 7 \%$, $\mathrm{S}_{2}=1 \cdot 2 \%$ and ash $=2 \cdot 1 \%$. Calculate the minimum amount of air necessary for complete combustion of one kg of fuel and percentage composition by mass of dry products of combustion.
18. Air from an initial conditions of $25^{\circ} \mathrm{C}$ and 1 bar is compressed in two stages according to the law $P V^{1.25}=$ constant and with complete intercooling to a pressure of 36 bar. Estimate the minimum work required and heat rejected in the intercooler per kg of air. Assume $C_{p}=1.05 \mathrm{~kJ} / \mathrm{kgK}$ and $R=0.29 \mathrm{~kJ} / \mathrm{kgK}$.
