C16-M-303

6244
 BOARD DIPLOMA EXAMINATION, (C-16)
 MARCH/APRIL-2021
 DME - THIRD SEMESTER EXAMINATION
 THERMAL ENGINEERING - I

Time : 3 hours]
[Total Marks : 80

PART-A

Instructions : (1) Answer all questions.
(2) Each question carries three marks.
(3) Answers should be brief and straight to the point and shall not exceed five simple sentences.
(4) Assume data wherever necessary.

1. For certain ideal gas, $\mathrm{R}=0.278 \mathrm{~kJ} / \mathrm{kgK}$ and $\gamma=1 \cdot 25$, determine C_{p}, C_{v} values.
2. Differentiate intensive and extensive properties with at least one example.
3. State the first law of thermodynamics and give mathematical expression.
4. Represent the following processes on P-V diagram :
(a) Constant pressure process
(b) Adiabatic process
(c) Isothermal process
www.manaresults.co.in
5. Write the expression for work done in Isothermal process and state the parameters involved.
6. What are the assumptions made in analysis of air standard cycle?
7. List various methods of lubricating system in IC Engines.
8. Differentiate coil ignition system with magneto ignition system.
9. Define the following terms :
(a) Brake power
(b) Mechanical efficiency
10. Write any three differences between Centrifugal compressor and Axial flow compressors.

Instructions: (1) Answer any five questions.
(2) Each question carries ten marks.
(3) Answers should be comprehensive and criterion for valuation is the content but not the length of the answer.
(4) Assume data wherever necessary for air $\mathrm{R}=0.287 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}$, $\gamma=1 \cdot 4$, if not specified.
11. $\quad 0.2 \mathrm{~kg}$ of gas is subjected to change of temperature from $15{ }^{\circ} \mathrm{C}$ to $180^{\circ} \mathrm{C}$ at constant pressure. Find the heat transfer, change of internal energy and change of Enthalpy. If specific heat at constant pressure is $1.0 \mathrm{~kJ} / \mathrm{kg} . \mathrm{K}$, Adiabatic index is 1.4 .
12. Explain the following terms with neat sketches.
(a) Quasi-Static work
(b) Flow work
13. In a steady flow system, the working fluid flowing at $5 \mathrm{~kg} / \mathrm{sec}$ enters the system with a velocity of $300 \mathrm{~m} / \mathrm{sec}$ and it has a specific enthalpy of $390 \mathrm{~kJ} / \mathrm{kg}$. The velocity, enthalpy at exit are $150 \mathrm{~m} / \mathrm{s}$ and $289 \mathrm{~kJ} /$ kg respectively. The fluid loses $5 \mathrm{~kJ} / \mathrm{kg}$ heat as it passes through the system. Determine the power of system stating whether it is from or to the system.
14. A quantity of gas has an initial pressure, volume and temperature of $150 \mathrm{kN} / \mathrm{m}^{2}, 0 \cdot 14 \mathrm{~m}^{3}$ and $25^{\circ} \mathrm{C}$ respectively. It is compressed to a pressure of $1.5 \mathrm{MN} / \mathrm{m}^{2}$ according to the law $\mathrm{PV}^{1 \cdot 25}=$ constant.

Determine : (a) work transfer to the gas
(b) Heat transfer from the gas
(c) The change of entropy

Take $\mathrm{C}_{\mathrm{p}}=1.041 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}, \mathrm{C}_{\mathrm{v}}=0.714 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}$.
15. In an engine working, a Diesel cycle has a compression ratio $15: 1$ and expansion ratio $8: 1$. The pressure and temperature at beginning of compression are 1 bar and $40^{\circ} \mathrm{C}$ respectively. Pressure before the heat rejection is 2.4 bar. Determine :
(a) Air standard efficiency of the cycle
(b) Maximum temperature and pressure attained in the cycle

Assume ratio of specific heat, $\gamma=1 \cdot 4$.
16. Explain the working of magneto - ignition system with the help of a line diagram.
17. A four stroke petrol engine with a compressor ratio of 6.5 to 1 and total displacement of $5.2 \times 10^{-3} \mathrm{~m}^{3}$ develops 120 kW BP and consumes 33 kg of petrol per hour of calorific value $44300 \mathrm{~kJ} / \mathrm{kg}$ at 3000 rpm .

Find 1. Brake mean effective pressure
2. Brake thermal efficiency
3. Air standard efficiency

Take $\gamma=1.4$.
18. A two stage compressor is used to compress 1 kg of free air from 1 bar and $32^{\circ} \mathrm{C}$ to 26 bar. The value of $\mathrm{n}=1.3$ and $\mathrm{R}=0.287 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}$.

Find the following :
(a) The intermediate pressure
(b) Work required for best performance
(c) Work for a corresponding single - stage compressor
(d) Percentage saving in works in two stage compressor

