

С16-м-303

6244

BOARD DIPLOMA EXAMINATION, (C-16) OCT/NOV—2018 DME—THIRD SEMESTER EXAMINATION

THERMAL ENGINEERING-I

Time: 3 hours]

[Total Marks: 80

PART—A

3×10=30

Instructions: (1) Answer **all** questions.

- (2) Each question carries **three** marks.
- (3) Answers should be brief and straight to the point and shall not exceed *five* simple sentences.
- **1.** Define mole and universal gas constant.
- **2.** Define quasi-static process.
- **3.** Stete the statements of Celsius and Kelvin-Planck.
- 4. Represent the following processes on T-s diagram :
 - (a) Isothermal process.
 - (b) Adiabatic process.
 - (c) Constant pressure process.
- 5. What is the difference between isentropic and adiabatic process?
- 6. Draw P-V and T-s diagrams of diesel cycle.
- 7. Differentiate between rotary and reciprocating IC engines.
- 8. State the advantages of multicylinder engines.
- 9. What is the significance of Morse test?

/6244

[Contd...

10. Write the applications of compressed air.

PART-B

10×5=50

- *Instructions* : (1) Answer *any* **five** questions.
 - (2) Each questions carries **ten** marks.
 - (3) Answers should be comprehensive and the criteria for valuation are the content but not the length of the answer.
- **11.** A steel cylinder of 50 liter capacity contains carbon dioxide at 18^oC and at a pressure of 120 bar. Calculate (a) mass of gas, (b) the mole volume, (c) density of the gas.
- **12.** (a) What is reversible and irreversible processes? Give two examples each.

(b) State the condition for reversibility.

- 13. An engineer claims his engine to devlop 5kW. On testing, the engine consumers 0.44 kg of fuel per hour having the calorific value 60000 kJ/kg, the maximum temperature recorded in the cycle is 1400°C and the minimum is 356°C. Find whether the engineer is justified in his claim.
- 14. 0.2 m^3 of a gas at 1.1 bar and 87° C is compressed to a volume of 0.05 m³ and final pressure becomes 6.3 bar. Determine (a) mass of the gas, (b) polytropic index, (c) heat rejected or received during comperssion. Assume Cp = 1.005 kJ/kg-K, Cv = 0.718 kJ/kg-K.
- 15. In an ideal Otto cycle the air at the beginning of isentropic compression has pressure of 1 bar temperature of 15°C. The compression ratio is 8. The heat added is 1008 kJ/kg during constant volume process.

Take γ = 1.4 and C_v = 0.714 kJ/kg-K. Determine :

(a) Max. Temperature of the cycle	(b) Air standard efficiency
-----------------------------------	-----------------------------

(c) Work done per kg of air /6244 2 (d) Heat rejected per kg of air [Contd...

- **16.** State the necessity of engine governing and explain the hit and miss type governing with the help of a neat sketch.
- 17. The percentage composition of a sample of fuel by mass is found to be C- 76%, H₂ - 5.2%, O₂ - 2.7%, S- 1.2%. Calculate the minimum amount of air necessary for complete combustion of one kg of fuel and percentage composition by mass of dry products of combustion.
- **18.** Explain the working of following rotary compressors with line diagram :
 - (a) Centrifugal compressor.
 - (b) Vane type compressor.

* * *

*

*

*