## 6244

## BOARD DIPLOMA EXAMINATION, (C-16) OCT/NOV-2018 <br> DME-THIRD SEMESTER EXAMINATION

THERMAL ENGINEERING-I
Time : 3 hours]
[Total Marks : 80

PART—A
$3 \times 10=30$
Instructions: (1) Answer all questions.
(2) Each question carries three marks.
(3) Answers should be brief and straight to the point and shall not exceed five simple sentences.

1. Define mole and universal gas constant.
2. Define quasi-static process.
3. Stete the statements of Celsius and Kelvin-Planck.
4. Represent the following processes on T-s diagram :
(a) Isothermal process.
(b) Adiabatic process.
(c) Constant pressure process.
5. What is the difference between isentropic and adiabatic process?
6. Draw P-V and T-s diagrams of diesel cycle.
7. Differentiate between rotary and reciprocating IC engines.
8. State the advantages of multicylinder engines.
9. What is the significance of Morse test?
10. Write the applications of compressed air.

## PART-B

$10 \times 5=50$
Instructions: (1) Answer any five questions.
(2) Each questions carries ten marks.
(3) Answers should be comprehensive and the criteria for valuation are the content but not the length of the answer.
11. A steel cylinder of 50 liter capacity contains carbon dioxide at $18^{\circ} \mathrm{C}$ and at a pressure of 120 bar. Calculate (a) mass of gas, (b) the mole volume, (c) density of the gas.
12. (a) What is reversible and irreversible processes? Give two examples each.
(b) State the condition for reversibility.
13. An engineer claims his engine to devlop 5 kW . On testing, the engine consumers 0.44 kg of fuel per hour having the calorific value 60000 $\mathrm{kJ} / \mathrm{kg}$, the maximum temperature recorded in the cycle is $1400^{\circ} \mathrm{C}$ and the minimum is $356^{\circ} \mathrm{C}$. Find whether the engineer is justified in his claim.
14. $0.2 \mathrm{~m}^{3}$ of a gas at 1.1 bar and $87^{\circ} \mathrm{C}$ is compressed to a volume of $0.05 \mathrm{~m}^{3}$ and final pressure becomes 6.3 bar. Determine (a) mass of the gas, (b) polytropic index, (c) heat rejected or received during comperssion. Assume $\mathrm{Cp}=1.005 \mathrm{~kJ} / \mathrm{kg}-\mathrm{K}, \mathrm{Cv}=0.718 \mathrm{~kJ} / \mathrm{kg}-\mathrm{K}$.
15. In an ideal Otto cycle the air at the beginning of isentropic compression has pressure of 1 bar temperature of $15^{\circ} \mathrm{C}$. The compression ratio is 8 . The heat added is $1008 \mathrm{~kJ} / \mathrm{kg}$ during constant volume process.

$$
\text { Take } \gamma=1.4 \text { and } \mathrm{C}_{\mathrm{v}}=0.714 \mathrm{~kJ} / \mathrm{kg}-\mathrm{K} . \text { Determine : }
$$

(a) Max. Temperature of the cycle
(b) Air standard efficiency
(c) Work done per kg of air
(d) Heat rejected per kg of air
16. State the necessity of engine governing and explain the hit and miss type governing with the help of a neat sketch.
17. The percentage composition of a sample of fuel by mass is found to be C- $76 \%, \mathrm{H}_{2}-5.2 \%, \mathrm{O}_{2}-2.7 \%$, $\mathrm{S}-1.2 \%$. Calculate the minimum amount of air necessary for complete combustion of one kg of fuel and percentage composition by mass of dry products of combustion.
18. Explain the working of following rotary compressors with line diagram :
(a) Centrifugal compressor.
(b) Vane type compressor.
*
*
*

