7259
 BOARD DIPLOMA EXAMINATION, (C-20) OCTOBER/NOVEMBER-2023

DME - THIRD SEMESTER EXAMINATION

BASIC THERMODYNAMICS
Time : 3 Hours]
[Total Marks : 80
PART—A
$3 \times 10=30$
Instructions : (1) Answer all questions.
(2) Each question carries three marks.
(3) Answers should be brief and straight to the point and shall not exceed five simple sentences.

1. Write any three limitations of the first law of thermodynamics.
2. Heat is supplied to a heat engine at the rate of $55 \mathrm{~kJ} / \mathrm{s}$ is giving an output of 15.4 kW . Calculate the thermal efficiency of the engine and the rate at which heat is rejected.
3. Determine the characteristic gas constant of N_{2} gas if one kg mole of N_{2} occupies $22.4 \mathrm{~m}^{3}$ at NTP.
4. State Avogadro's law.
5. Write the mathematical expression for change in entropy and mention various terms for (a) constant volume process and (b) adiabatic process.
6. Draw the $\mathrm{p}-\mathrm{V}$ diagram for (a) polytropic process, (b) constant pressure process and (c) constant volume process.
7. Define air standard efficiency. State any two assumptions made in the analysis of air standard cycles.
8. A researcher claims that his engine, working between the temperature limits $1310{ }^{\circ} \mathrm{C}$ and $320^{\circ} \mathrm{C}$, has an efficiency of 85%. State whether his claim is correct or not. What is the reason behind your answer?
9. Define calorific value of fuel.
10. Find the HCV of a fuel whose composition by mass is $\mathrm{C}-75 \%, \mathrm{H}_{2}-5 \%$, $\mathrm{O}_{2}-8 \%, \mathrm{~N}_{2}-4 \%, \mathrm{~S}-2 \%$ and Ash-6\%.

> PART—B

Instructions: (1) Answer all questions.
(2) Each question carries eight marks.
(3) Answers should be comprehensive and criterion for valuation is the content but not the length of the answer.
11. (a) A system undergoes a cycle composed of four processes and energy transfers are tabulated below.

Process	$\mathrm{Q}(\mathrm{kJ} / \mathrm{min})$	$\mathrm{W} \mathrm{kJ} / \mathrm{min}$	$\Delta \mathrm{U}(\mathrm{kJ} / \mathrm{min})$
$1-2$	550	230	$?$
$2-3$	230	$?$	380
$3-4$	-500	$?$	$?$
$4-1$	0	70	$?$

Complete the given table and determine the rate of work in kW .
(b) (i) Write any three corollaries of second law of thermodynamics.
(ii) Draw the diagrams for a refrigerator and a heat pump. What are the differences between these two?
12. (a) Derive the relation between $\mathrm{C}_{\mathrm{P}}, \mathrm{C}_{\mathrm{V}}$ and R .
(b) A tank of $0.525 \mathrm{~m}^{3}$ capacity contains air at a pressure of 0.35 bar absolute and a temperature of 363 K . What will be the mass of air that must be pumped into the tank, without changing the temperature, to increase the pressure to $100 \mathrm{kN} / \mathrm{m}^{2}$ absolute. Assume $\mathrm{R}=0.287 \mathrm{~kJ} / \mathrm{Kg} \mathrm{K}$.
13. (a) One kg of CO_{2} is contained in a frictionless piston-cylinder system and during a reversible isothermal process 26.4 kJ of energy is transferred out of the system. If the initial conditions of CO_{2} are 1.4 bar and $32^{\circ} \mathrm{C}$, calculate the work and final pressure.
(OR)
(b) $0.12 \mathrm{~m}^{3}$ of an ideal gas, initially at a pressure of 12 bar and temperature $200{ }^{\circ} \mathrm{C}$, expands adiabatically to a pressure of 2.4 bar . Calculate (i) the final temperature and (ii) the work done if the adiabatic index for the gas is 1.4.
14. (a) Derive the formula for air standard efficiency of Otto cycle with the help of $\mathrm{p}-\mathrm{V}$ and $\mathrm{T}-\mathrm{s}$ diagrams.

8

(OR)

(b) At the beginning of compression of an ideal diesel cycle, the gas has a temperature and pressure of $40^{\circ} \mathrm{C}$ and $90 \mathrm{kN} / \mathrm{m}^{2}$ respectively. The compression ratio is $16: 1$. The maximum temperature of the cycle is $1400{ }^{\circ} \mathrm{C}$. Determine (i) the pressure and temperature at each of the cycle process change points, (ii) the work done per kg of gas and (iii) the thermal efficiency. Take $\gamma=1.4, \mathrm{C}_{\mathrm{P}}=1.004 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}$.
15. (a) Explain the procedure for the determination of calorific value using a bomb calorimeter.

(OR)

(b) How do you classify the fuels? What are the desired characteristics
of fuels?

PART—C
Instructions: (1) Answer the following question.
(2) The question carries ten marks.
(3) Answer should be comprehensive and the criterion for valuation is the content but not the length of the answer.
16. $0.28 \mathrm{~m}^{3}$ of air at $102 \mathrm{kN} / \mathrm{m}^{2}$ and $27^{\circ} \mathrm{C}$ is compressed to one tenth of the original volume according to the law $\mathrm{pV}^{1.26}=$ Constant. Heat is then added at constant volume until the pressure is $5600 \mathrm{kN} / \mathrm{m}^{2}$. Calculate the overall change of entropy. Assume $\mathrm{C}_{\mathrm{P}}=1.005 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}$, $\mathrm{C}_{\mathrm{V}}=0.717 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}$.

