I B.Pharmacy I Semester Supplementary Examinations, Oct/Nov 2013 MATHEMATICS-I

Time: 3 hours
Max Marks: 75

Answer any FIVE Questions
 All Questions carry equal marks

1. (a) Find the sum of all numbers between 100 and 1000 which are divisible by 13 .
(b) Resolve $\frac{2 x+3}{x^{2}-2 x-3}$ into partial fractions
2. (a) Find the coefficient of $x^{6} \cdot y^{3}$ in the expansion of $\left(2 x-\frac{y}{3}\right)^{9}$.
(b) Evaluate $\left|\begin{array}{ccc}3 & 2 & 1 \\ 2 & 4 & 9 \\ 5 & -2 & 2\end{array}\right|$
3. (a) If $\sec \theta=x+\frac{1}{4 x}$, prove that $\tan \theta+\sec \theta=2 x$.
(b) Prove that $\sum \frac{\cos (B+C)}{\cos B \cos C}=2$ if $\mathrm{A}, \mathrm{B}, \mathrm{C}$ are positive.
4. (a) Suppose that $\mathrm{A}+\mathrm{B}=135^{\circ}$ and neither A nor B is an integral multiple of 180°. Then prove that $(1+\cot \mathrm{A})(1+\cot \mathrm{B})=2$ and hence deduce that $\cot 67 \frac{1}{2}^{\circ}=\sqrt{2}-1$.
(b) Prove that $\cos \frac{\pi}{11} \cdot \cos \frac{2 \pi}{11} \cdot \cos \frac{3 \pi}{11} \cdot \cos \frac{4 \pi}{11} \cdot \cos \frac{5 \pi}{11}=\frac{1}{32}$
5. (a) Find the equation of the locus of a point which is at a distance 5 from $\mathrm{A}(4,-3)$
(b) Find the equation of the locus of P , if the ratio of the distance from P to $\mathrm{A}(5,-4)$ and $\mathrm{B}(7,6)$ is $2: 3$
6. (a) Find the distance between the points $(a \cos \propto, a \sin \propto),(a \cos \beta, a \sin \beta)$
(b) Find the value of ' a ' if the distance between the points ($\mathrm{a}, 2$), $(3,4)$ is $2 \sqrt{2}[8+7]$
7. (a) Compute $\lim _{x->0}\left[\frac{\cos a x-\cos b x}{x^{2}}\right]$
(b) If $X=\frac{3 a t}{1+t^{3}}, Y=\frac{3 a t^{2}}{1+t^{3}}$ then find $\frac{d y}{d x}$
8. (a) If $f: R-R$ is defined by $f(x)=\left\{\begin{array}{c}2 x-1 \text { if } x<3 \\ 5 \text { if } x=3\end{array}\right.$ find $\lim _{x \rightarrow 3} f(x)$
(b) If $Y^{x}=x^{s i n y}$ then find $\frac{d y}{d x}$
