

SET - 1

I B. Pharmacy I Semester Regular/Supplementary Examinations, February - 2020 PHARMACEUTICAL ANALYSIS-I

Time: 3 hours			
		 Note: 1. Question paper consists of three parts (Part-I, Part-II & Part-III) 2. Answer ALL (Multiple Choice) Questions from Part-I 3. Answer any TWO Questions from Part-II 4. Answer any SEVEN Questions from Part-III 	
		<u>PART –I</u>	
1.	(i)	Calcium ion can be estimated by using the reagent (a) NaNO ₂ (b) H ₂ SO ₄ (c) EDTA (d) NaOH	(1M)
	(ii)	If a pharmaceutical product is listed in any Pharmacopoeia, it is called as (a) spurious drug (b) official drug (c) rejected drug (d) approved drug	(1M)
	(iii)	When is dissolved in water, the solution will become acidic. (a) NaCl (b) NH ₄ Cl (c) NaOAc (d) NH ₄ OAc	(1M)
	(iv)	indicator is used for pH 8-9 (a) Thymol blue (b) bromothymol blue (c) methyl violet (d) phenolphthalein	(1M)
	(v)	 is not essential for a primary standard.(a) Purity (b) Stability (c) low hygroscopicity (d) high molecular weight	(1M)
	(vi)	AgNO ₃ is used for limit test of (a) Chloride (b) sulfate (c) Iron (d) Lead	(1M)
	(vii)	In complexometric titrations, is used for masking Fe^{+3} ion. (a) Triethanolamine (b) NaCN (c) sodium hydroxide (d) Na ₂ CO ₃	(1M)
	(viii)	is used as solvent for preparing 0.1N perchloric acid solution. (a) ethanol (b) acetic acid (c) chloroform (d) water	(1M)
	(xi)	Colloids scatter the light due to (a) Tyndall effect (b) Brownian motion (c) Raman effect (d) Fluorescence	(1M)
	(x)	A lipophilic weak acid is preferably estimated by using titration. (a) aqueous (b) non-aqueous (c) complexometry (d) gravimetry	(1M)
	(xi)	Reduction involves	(1 M)
	(xii)	A calomel electrode is an example of(a) a fuel cell(b) reference electrode(c) ion selective electrode(d) electrolytic cell	(1M)
	(xiii)	In a reaction between CuSO _{4(s)} and Zn _(s) , (a) copper gains electrons (b) copper is being reduced (c) copper experiences a decrease in oxidation state (d) all of the above	(1M)
	(xiv)	Which of the following is not an Oxidizing agent? (a) potassium iodide (b) potassium manganate (c) potassium dichromate (What whe source NARESULTS.CO.IN	(1M)

Code No: BP102T

	(x	(v)	If acidified Potassium Manganate (VII) acts as oxidizing agent, color changes from (a) orange to red (b) Purple to green (c) Purple to colourless (d) yellow to red	(1M)
	(x	vi)	Formation of a precipitate is necessary for (a) polarography (b) voltammetry (c) electrogravimetry (d) conductometry	(1M)
	(X ¹	vii)	Values of E° for the Ce ⁴⁺ /Ce ³⁺ and Fe ²⁺ /Fe half-cells are +1.72 and -0.44 V, respectively. From these data you can conclude that: (a) Ce ⁴⁺ will oxidize Fe ² (b) Ce ⁴⁺ is a better oxidizing agent than Fe ²⁺ . (c) Ce ³⁺ is a better oxidizing agent than Fe ²⁺ (d) Ce ³⁺ will oxidize Fe	(1M)
	(xviii)		An electrochemical cell consists of two copper electrodes dipping into aqueous CuSO ₄ solution; the electrodes are connected to a battery. Which statement about the electrolysis process in this cell is incorrect? (a) Reduction occurs at anode (b) Copper is deposited on cathode (c) Cu ⁺² ions are produced at anode (d) Copper is transported from anode to cathode	(1M)
	(x	ix)	Standard hydrogen electrode has an arbitrarily fixed potential at volt (a) 0.00 (b) 1.00 (c) 0.10 (d) None of the above	(1M)
	(x	xx)	The Potential at the point on the polarographic wave where the current is equal to one half of the diffusion current is termed as (a) Half wave current (b) full wave Current (c) half wave Potential (d) full wave Potential	(1M)
			PART -II	
2.	a)	-		
		Enu	merate methods used for reducing errors.	(5M)
	b)		te a note on Pharmacopoeias.	(5M) (5M)
3.	b) a)	Wri		
3.		Wri Clas	te a note on Pharmacopoeias.	(5M)
 3. 4. 	a)	Wri Clas Wri	te a note on Pharmacopoeias. ssify acid base titrations with examples. Write in brief on neutralizing curves.	(5M) (5M)
	a) b)	Wri Clas Wri Wit	te a note on Pharmacopoeias. ssify acid base titrations with examples. Write in brief on neutralizing curves. te principle and procedure involved in estimation of MgSO ₄ .	(5M) (5M) (5M)
	a) b) a)	Wri Clas Wri Wit	te a note on Pharmacopoeias. ssify acid base titrations with examples. Write in brief on neutralizing curves. te principle and procedure involved in estimation of MgSO ₄ . h a neat sketch explain construction of dropping mercury electrode. cuss the methods used to determine end point in potentiometric titrations.	(5M) (5M) (5M) (5M)
	a) b) a)	Wri Clas Wri Wit Dise	te a note on Pharmacopoeias. ssify acid base titrations with examples. Write in brief on neutralizing curves. te principle and procedure involved in estimation of MgSO ₄ . h a neat sketch explain construction of dropping mercury electrode.	(5M) (5M) (5M) (5M)
4.	a) b) a)	Wri Clas Wri Wit Diso Wri	te a note on Pharmacopoeias. ssify acid base titrations with examples. Write in brief on neutralizing curves. te principle and procedure involved in estimation of MgSO ₄ . h a neat sketch explain construction of dropping mercury electrode. cuss the methods used to determine end point in potentiometric titrations. <u>PART -III</u>	(5M) (5M) (5M) (5M) (5M)
4. 5.	a) b) a)	Wri Clas Wri Wit Diso Wri Exp	te a note on Pharmacopoeias. ssify acid base titrations with examples. Write in brief on neutralizing curves. te principle and procedure involved in estimation of MgSO ₄ . h a neat sketch explain construction of dropping mercury electrode. cuss the methods used to determine end point in potentiometric titrations. <u>PART -III</u> te a note on determinate errors.	(5M) (5M) (5M) (5M) (5M)
4. 5. 6.	a) b) a)	Wri Clas Wri Diso Wri Exp Exp	te a note on Pharmacopoeias. ssify acid base titrations with examples. Write in brief on neutralizing curves. te principle and procedure involved in estimation of MgSO ₄ . h a neat sketch explain construction of dropping mercury electrode. cuss the methods used to determine end point in potentiometric titrations. <u>PART -III</u> te a note on determinate errors. lain the role of reaction process as a source of impurity.	(5M) (5M) (5M) (5M) (5M) (5M)
 4. 5. 6. 7. 	a) b) a)	Wri Clas Wri Diso Wri Exp Exp Wri	te a note on Pharmacopoeias. ssify acid base titrations with examples. Write in brief on neutralizing curves. te principle and procedure involved in estimation of MgSO ₄ . h a neat sketch explain construction of dropping mercury electrode. cuss the methods used to determine end point in potentiometric titrations. <u>PART -III</u> te a note on determinate errors. lain the role of reaction process as a source of impurity. lain the principle, chemistry and significance of limit test for iron.	(5M) (5M) (5M) (5M) (5M) (5M) (5M)
 4. 5. 6. 7. 8. 	a) b) a)	Wri Clas Wri Diso Wri Exp Wri Exp	te a note on Pharmacopoeias. ssify acid base titrations with examples. Write in brief on neutralizing curves. te principle and procedure involved in estimation of MgSO ₄ . h a neat sketch explain construction of dropping mercury electrode. cuss the methods used to determine end point in potentiometric titrations. <u>PART -III</u> te a note on determinate errors. blain the role of reaction process as a source of impurity. blain the principle, chemistry and significance of limit test for iron. te in brief on metal-ion indicators.	(5M) (5M) (5M) (5M) (5M) (5M) (5M) (5M)
 4. 5. 6. 7. 8. 9. 	a) b) a)	Wri Clas Wri Diso Wri Exp Wri Exp Wri	te a note on Pharmacopoeias. ssify acid base titrations with examples. Write in brief on neutralizing curves. te principle and procedure involved in estimation of MgSO ₄ . h a neat sketch explain construction of dropping mercury electrode. cuss the methods used to determine end point in potentiometric titrations. <u>PART -III</u> te a note on determinate errors. blain the role of reaction process as a source of impurity. blain the principle, chemistry and significance of limit test for iron. te in brief on metal-ion indicators. blain the principle, procedure and applications of Mohr's method.	 (5M) (5M) (5M) (5M) (5M) (5M) (5M) (5M) (5M)
 4. 5. 6. 7. 8. 9. 10. 	a) b) a)	Wri Clas Wri Dise Wri Exp Wri Exp Wri Exp	te a note on Pharmacopoeias. ssify acid base titrations with examples. Write in brief on neutralizing curves. te principle and procedure involved in estimation of MgSO ₄ . h a neat sketch explain construction of dropping mercury electrode. cuss the methods used to determine end point in potentiometric titrations. PART -III te a note on determinate errors. blain the role of reaction process as a source of impurity. blain the principle, chemistry and significance of limit test for iron. te in brief on metal-ion indicators. blain the principle, procedure and applications of Mohr's method. te in detail on Iodimetry.	 (5M)