Code No: H8701/R13

M. Tech. II Semester Supplementary Examinations, May-2017
 FINITE ELEMENT METHOD
 (Common to SE \&SD, SM\&FE, GE)

Time: 3 Hours
Max. Marks: 60

Answer any FIVE Questions All Questions Carry Equal Marks

1. Using Rayleigh-Ritz method find the approximate displacement of uniform bar (EA 12 M constant) fixed at one end and subjected to a static point load at the other end. The bar is also subjected to a linearly varying axial load $q(x)=c x$, where c is a given constant. Compare the linear and quadratic solution.
2. Using minimum potential energy approach, derive the stiffness matrix and consistent load matrix
3. a Write the steps involved in FEM for a structural mechanics problems solution with formulations
b Write the concept of FEM with example. Explain the Software's based on FEM.
4. Find the nodal displacement and member forces for the truss shown in figure

5. a Define with neat sketch, Iso-parametric, Super-parametric and Sub-parametric elements
b Determine the Cartesian coordinates of the point $\mathrm{P}(\xi=0.7, \eta=0.6)$ shown in figure

1 of 2
WWW.MANARESULTS.CO.IN

Code No: H8701/R13

6. A propped cantilever beam of length 10 m carries a concentrated load of 20 kN at the centre of span. $\mathrm{EI}=48 \times 10^{5} \mathrm{~N}-\mathrm{m}^{2}$. Determine deflection under the load and shear force and bending moment at mid span.
7. Derive the shape function for three noded CST element and draw the variation of shape functions.
8. A plate of dimensions $15 \mathrm{~cm} \times 6 \mathrm{~cm} \times 1 \mathrm{~cm}$ is subjected to an axial pull of 15 kN . Assuming a typical element is of dimensions as shown in figure. Find shape functions at point $(15,20)$. Determine the strain displacement matrix and constitutive matrix. $\mathrm{E}=200 \mathrm{GPa}, \mu=0.3$

2 of 2

