Subject Code: H8701/R13
 M. Tech -II Semester Regular/ Supply Examinations, October, 2015
 FINITE ELEMENT METHOD
 (Common to SE \&SD, SM\&FE, GE)

Time: 3 Hours
Max Marks: 60

Answer any FIVE questions
 All questions carry EQUAL marks ****

1 a Explain about different weighted residual methods.
b Taking a differential equation, explain the process of weak formulation.
2 a A simply supported beam is subjected to uniformly distributed load over entire span. Determine the bending moment and deflection at the mid span using Rayleigh -Ritz method and compare with exact solution. Use a two term trial function $y=a_{1} \sin (\pi x / l)+a_{2} \sin (3 \pi x / l)$.
b Explain the applications of FEM. 4
3 a Derive the shape functions of two node and three node bar elements.
b For the three-bar assemblage shown in Figure, determine
(i) The global stiffness matrix,
(ii) The displacements of nodes 2 and 3, and
(iii) The reactions at nodes 1 and 4 .
(iv) Stress in each element. A force of 3000 lb is applied in the x direction at node 2.

The length of each element is 30 in . Let $\mathrm{E}=30 \times 10^{6} \mathrm{psi}$ and $\mathrm{A}=1 \mathrm{in}^{2}$ for elements 1 and 2, and let $\mathrm{E}=15 \times 10^{6}$ psi and $\mathrm{A}=2$ in 2 for element 3 . Nodes 1 and 4 are fixed.

a For the plane trusses with inclined supports shown in Figure, solve for the nodal displacements and element stresses in the elements. Let $\mathrm{A}=2 \mathrm{in}^{2}$, $\mathrm{E}=3010^{6} \mathrm{psi}$, and $\mathrm{L}=30 \mathrm{in}$. for each truss.

b Explain the properties of stiffness matrix

Subject Code: H8701/R13

a Derive the stiffness matrix for a beam element.
b Derive the load vector for UDL and point load at the center for a beam element.
c Explain how thermal loads are considered in finite element analysis?
6 a Solve the frame shown in Figure. The frame consists of the three elements shown and is subjected to a 15-kip horizontal load applied at midlength of element 1. Nodes 1, 2, and 3 are fixed, and the dimensions are shown in the figure. Let $\mathrm{E}=30 \times 10^{6}$ psi, $\mathrm{I}=800 \mathrm{in}^{4}$, and $\mathrm{A}=8 \mathrm{in}^{2}$ for all elements.

b What is meant by an Isoparametric element? 5
7 a Explain the concept of plane stress and plane strain with examples. 6
b Derive the strain displacement matrix and equation for element stiffness for a LST
element.
8 a Derive and plot the shape functions of quadratic plane element.
b What is numerical integration? Taking a simple example and evaluate the intigral value by gauss quadrature method considering one gauss point and two gauss points. Compare these results with the exact result
c How error is evaluated in finite element analysis?

