Code No: I2201/R16

M. Tech. I Semester Regular/Supple Examinations, Jan/Feb-2018

ADVANCED MATHEMATICS

(Common to Transportation Engineering (22), Structural Engineering (87), Structural Design(85), Soil Mechanics & Foundation Engineering (19), Geotechnical Engineering (20) and Computer Aided Structural Engineering (35))

Time: 3 Hours Max. Marks: 60

			A	ll Questio	ns Co	arry Eque	ıl Marks				
1.	Solve the heat equation $u_t = u_{xx}$ subject to the conditions $u(x,0) = \sin \pi x$ for $0 \le x \le 1$, $u(0,t) = 0$ and $u(1,t) = 0$ with $h = 0.25$ and $k = 1/16$. Compute $u(0.5, 0.125)$ using Crank Nicolson method.										
2. 3. a	Solve the beconditions Fit a curve	$u(10,\theta)=$	$=\frac{400}{\pi}\left(\pi\theta\right)$	$-\theta^2$), u(1	:,0) =	0 and u(0	$(0,\theta)$ is fin		10 subje	ect to the	
3. a	X		<u>лигу — а.</u> 1	2	10110	willg data		4		5	
	V		0.5	2.		4.5		8			
b	Calculate the coefficient of correlation for the following data.										
Ü	X		1	2		3		4		5	
	У		5	4				2		1	
4. a	Find the m below:	ultiple li	2	3	ation	7 12	Y and Z	using 8 13	the dat	1 lata given 9 15	
			6	(1						1)	
	Y		6	9							
h	Y	unla garra	7	12	or tha	15	a data	16		17	
b	Y	ank corre	7	12	or the	15 followin			50		

5. Use M method to maximize Z = 6x + 4y subject to $2x + 3y \le 30$, $3x + 2y \le 24$, $x + y \ge 3$, $x, y \ge 0$.

1 of 2
WWW.MANARESULTS.CO.IN

Code No: I2201/R16

6. It is of interest to study the effect of population size in various cities in US on ozone concentrations. The data consists of 1999 population in millions and the amount of ozone present per hour in parts per billion. The data are as follows:

Ozone present	126	135	124	128	130	128	126	128	128
X- population	0.6	4.9	0.2	0.5	1.1	0.1	1.1	2.3	0.6

12M

Fit a linear regression model relating ozone concentration to population.

Test H_0 : β =0 using ANOVA approach

7. A bar of 10cm long with insulated sides has its ends A and B maintained at temperatures 0°C and 100°C respectively, until steady-state conditions prevail. The temperature at A is suddenly raised to 20°C and at the same time that at B is lowered to 80°C. Find the temperature distribution in the bar at time t using the method of separation of variables.

8. Minimize $f(x,y) = 2x^2 + y^2$ by using the steepest descent method with the starting point $X_1 = {1 \choose 2}$ (3 iterations only)

2 of 2