M. Tech. I Semester Supplementary Examinations, February-2020
 ADVANCED MATHEMATICS

Common to Transportation Engineering (22), Structural Design (85), Structural Engineering (87), Soil Mechanics \& Foundation Engineering (19), Geotechnical Engineering (20) and Computer Aided Structural Engineering (35)

Time: 3 Hours
Max. Marks: 60

Answer any FIVE Questions
 All Questions Carry Equal Marks

1. a Derive two dimensional Laplace equation in spherical coordinates.

6
$\mathrm{b} \quad$ Find the solution of $\frac{\partial^{2} u}{\partial t^{2}}=c^{2} \frac{\partial^{2} u}{\partial x^{2}}, 0<\mathrm{x}<\mathrm{L}, \mathrm{t}>0$, with the boundary conditions $u(0, t)=0$, and $u(L, t)=0$ for all $\mathrm{t}>0, u(x, 0)=f(x)$ and $\frac{\partial u(x, 0)}{\partial t}=g(x)$ for $0<x<\mathrm{L}$.
2. Solve the Poisson equation $\nabla^{2} u=x^{2}+y^{2}$ with $u(x, y)=0$ on the boundary

12 of the square defined by $x=0, x=1, y=0$ and $y=1$ with mesh length 0.25 .
3. a Fit a regression curve of the form $y=a+b x+c x^{2}$ to the following data and estimate y when $x=1.5$

x	1	2	3	4
y	1.7	1.8	2.3	3.2

b Fit a curve of the form $y=a x^{b}$ to the following data

x	20	16	10	11	14
y	22	41	120	89	56

4. From the data relating to the variables $\mathrm{X}_{1}, \mathrm{X}_{2}$ and X_{3} of 18 samples the following correlation coefficients were obtained

$$
\mathrm{r}_{12}=0.52, \mathrm{r}_{13}=0.77 \text { and } \mathrm{r}_{23}=0.72
$$

Find the multiple correlation coefficients $\mathrm{R}_{1.23}$
5. a Solve LPP Minimize $z=1.5 x_{1}+2.5 x_{2}$ subject to $x_{1}+3 x_{2} \geq 3, x_{1}+x_{2} \geq 2$ and
b Solve LPP Maximize $z=x_{1}-3 x_{2}+2 x_{3}$ subject to $3 x_{1}-x_{2}+3 x_{3} \leq 7$,

$$
-2 x_{1}+4 x_{2} \leq 12,-4 x_{1}+3 x_{2}+8 x_{3} \leq 10 \text { and } x_{1}, x_{2}, x_{3} \geq 0
$$

Code No: I2201/R16

6. Determine the coefficient of correlation to the following bivariate frequency distribution

y	$15-25$	$25-35$	$35-45$	$45-55$	$55-65$	$65-75$
$15-25$	1	1				
$25-35$	2	12	1			
$35-45$		4	10	1		
$45-55$			3	6	1	
$55-65$				2	4	2
$65-75$					1	2

7. Solve the following problem by Big-M method Max. $z=x_{1}+2 x_{2}+3 x_{3}-x_{4}$ subject to $x_{1}+2 x_{2}+3 x_{3}=15,2 x_{1}+x_{2}+5 x_{3}=20, x_{1}+2 x_{2}+x_{3}+x_{4}=10$ and $x_{1}, x_{2}, x_{3}, x_{4} \geq 0$
8. Estimate the equation of regression plane connecting $\mathrm{x}_{1}, \mathrm{x}_{2}$ and y for the following data

x_{1}	3	5	6	8	12	14
x_{2}	16	10	7	4	3	2
Y	90	72	54	42	30	12

2 of 2

