M. Tech. I Semester Supplementary Examinations, February-2020

ADVANCED MATHEMATICS

Common to Transportation Engineering (22), Structural Design (85), Structural Engineering (87), Soil Mechanics & Foundation Engineering (19), Geotechnical Engineering (20) and Computer Aided Structural Engineering (35)

Time:	3	Hours
-------	---	-------

Max. Marks: 60

	Ai	nswer any FIV	E Questions		
	All Ç	Questions Carr	ry Equal Mark	5	
. a b	Derive two dimensional Lapl Find the solution of $\frac{\partial^2 u}{\partial t^2} = u(0,t) = 0$, and $u(L,t) = 0$ for	$c^2 \frac{\partial^2 u}{\partial x^2}, 0 < \mathbf{x}$	< L, t $>$ 0, with	n the boundary	
	Solve the Poisson equation of the square defined by		- ,	• /	
a	Fit a regression curve of t x 1 2 3 4 y 1.7 1.8 2.3 3.2	estimate y wl	hen $x = 1.5$		ng data and
b		f the form $y =$			
	x 20	16	10	11	14
	y 22	41	120	89	56
	From the data relating to the correlation coefficients were			-	following
	Find the multiple correlation	coefficients R	1.23		
a		$5x_1 + 2.5x_2$ su		$3x_2 \ge 3, x_1 + $	$x_2 \ge 2$ and

1 of 2

Code No: I2201/R16

6. Determine the coefficient of correlation to the following bivariate frequency 12 distribution

X	15-25	25-35	35-45	45-55	55-65	65-75
y y						
15-25	1	1				
25-35	2	12	1			
35-45		4	10	1		
45-55			3	6	1	
55-65				2	4	2
65-75					1	2

- 7. Solve the following problem by Big-M method Max. $z = x_1 + 2x_2 + 3x_3 x_4$ subject to $x_1 + 2x_2 + 3x_3 = 15$, $2x_1 + x_2 + 5x_3 = 20$, $x_1 + 2x_2 + x_3 + x_4 = 10$ and x_1 , x_2 , x_3 , $x_4 \ge 0$
- 8. Estimate the equation of regression plane connecting x_1, x_2 and y for the following 12 data

12

x ₁	3	5	6	8	12	14
x ₂	16	10	7	4	3	2
Y	90	72	54	42	30	12

2 of 2

["]"["]"]" www.manaresults.co.in