

I B. Tech I Semester Supplementary Examinations, January - 2020 MATHEMATICS-I

(Com. to All branches) Time: 3 hours Max. Marks: 75 Answer any FIVE Questions All Questions carry Equal Marks 1. a) Solve $y(2x^2y + e^x)dx = (e^x + y^3)dy$. (8M) b) A bacterial culture, growing exponentially, increase from 200 to 500 grams in the (7M)period from 6a.m. to 9a.m. How many grams will be present at 12 noon? 2. a) Solve $(D^2 + 16) y = e^{-4x}$. (8M) b) Solve $D^2 (D^2 + 4) y = 96x^2 + x \sin 2x$ (7M) 3. a) If $x = e^r \sec \theta$, $y = e^r \tan \theta$ prove that $\frac{\partial(x, y)}{\partial(r, \theta)} \cdot \frac{\partial(r, \theta)}{\partial(x, y)} = 1$. (8M) b) Investigate the maxima and minima, if any, of the function $f(x) = x^3 y^2 (1 - x - y)$. (7M) 4. a) Trace the curve $x^3 + y^3 + 3axy = 0$. (8M) b) Trace the curve $r = a (1 - \cos \theta)$. (7M) 5. a) Find volume of the solid that results when the region enclosed by the curve ellipse (8M) $\frac{x^2}{x^2} + \frac{y^2}{x^2} = 1, (0 < b < a) \text{ rotates about major axis.}$ b) Find the arc length of the curve $3x^2 = y^3$ between y = 0 and y = 1. (7M)6. a) Evaluate $\int_{a}^{a} \int_{a}^{\sqrt{a^2 - x^2}} \sqrt{a^2 - x^2 - y^2} dy dx.$ (8M) b) By changing the order of integration, evaluate $\int_{-1}^{3\sqrt{4-y}} \int_{-1}^{\sqrt{4-y}} (x+y) dx dy.$ (7M) 7. a) Find the directional derivative of $xyz^2 + xz$ at (1, 1, 1) in a direction of the normal (8M) to the surface $3xy^2 + y = z$ at (0, 1, 1). b) If \bar{r} is the position vector of the point (x, y, z), prove that (7M) $div.grad(r^n) = n(n+1)r^{n-2}$. 8. a) Evaluate $\int_{C} \overline{F} dr$ where $\overline{F} = 3xy\overline{i} - y^{2}\overline{j}$ and C is the curve $y = 2x^{2}$ in xy-plane from (8M) (0, 0) to (1, 2).

b) Use Gauss divergence theorem to evaluate $\iint_{s} (yz\overline{i} + zx\overline{j} + 2zx^{2}\overline{k}).ds$, where S is the (7M) closed surface bounded by the xy - plane and the upper half of the sphere $x^{2} + y^{2} + z^{2} = a^{2}$ above this plane.

www.manaresults.co.in