I B. Tech I Semester Supplementary Examinations, January - 2020
 MATHEMATICS-I

(Com. to All branches)

Answer any FIVE Questions
 All Questions carry Equal Marks

1. a) Solve $y\left(2 x^{2} y+e^{x}\right) d x=\left(e^{x}+y^{3}\right) d y$.
b) A bacterial culture, growing exponentially, increase from 200 to 500 grams in the period from 6 a.m. to $9 \mathrm{a} . \mathrm{m}$. How many grams will be present at 12 noon?
2. a) Solve $\left(D^{2}+16\right) y=e^{-4 x}$.
b) Solve $D^{2}\left(D^{2}+4\right) y=96 x^{2}+x \sin 2 x$
3. a) If $\mathrm{x}=\mathrm{e}^{r} \sec \theta, \mathrm{y}=\mathrm{e}^{r} \tan \theta$ prove that $\frac{\partial(x, y)}{\partial(r, \theta)} \cdot \frac{\partial(r, \theta)}{\partial(x, y)}=1$.
b) Investigate the maxima and minima, if any, of the function $f(x)=x^{3} y^{2}(1-x-y)$.
4. a) Trace the curve $x^{3}+y^{3}+3 a x y=0$.
b) Trace the curve $\mathrm{r}=\mathrm{a}(1-\cos \theta)$.
5. a) Find volume of the solid that results when the region enclosed by the curve ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1,(0<\mathrm{b}<\mathrm{a})$ rotates about major axis.
b) Find the arc length of the curve $3 x^{2}=y^{3}$ between $\mathrm{y}=0$ and $\mathrm{y}=1$.
6. a) Evaluate $\int_{0}^{a} \int_{0}^{\sqrt{a^{2}-x^{2}}} \sqrt{a^{2}-x^{2}-y^{2}} d y d x$.
b) By changing the order of integration, evaluate $\int_{0}^{3} \int_{1}^{\sqrt{4-y}}(x+y) d x d y$.
7. a) Find the directional derivative of $x y z^{2}+x z$ at $(1,1,1)$ in a direction of the normal to the surface $3 x y^{2}+y=z$ at $(0,1,1)$.
b) If \bar{r} is the position vector of the point $(\mathrm{x}, \mathrm{y}, \mathrm{z})$, prove that $\operatorname{div} \cdot \operatorname{grad}\left(r^{n}\right)=n(n+1) r^{n-2}$.
8. a) Evaluate $\int_{C} \bar{F} . d r$ where $\bar{F}=3 x y \bar{i}-y^{2} \bar{j}$ and C is the curve $\mathrm{y}=2 \mathrm{x}^{2}$ in xy -plane from $(0,0)$ to $(1,2)$.
b) Use Gauss divergence theorem to evaluate $\iint_{S}\left(y z \bar{i}+z \bar{x}+2 z x^{2} \bar{k}\right) \cdot d s$, where S is the closed surface bounded by the xy - plane and the upper half of the sphere $x^{2}+y^{2}+z^{2}=a^{2}$ above this plane.
