I B. Tech I Semester Supplementary Examinations, May/June - 2019 MATHEMATICS-I

(Com. to All branches)
Max. Marks: 75

Answer any FIVE Questions

All Questions carry Equal Marks

1. a) Solve $\mathrm{x} \frac{d y}{d x}+\mathrm{y}=\mathrm{x}^{3} \mathrm{y}^{6}$.
b) Suppose that an object is heated to $300^{\circ} \mathrm{F}$ and allowed to cool in a room whose air temperature is $80^{\circ} \mathrm{F}$, if after 10 minutes the temperature of the object is $250^{\circ} \mathrm{F}$, what will be its temperature after 20 minutes.
2. a) Solve $\left(D^{3}-4 D+13\right) y=e^{2 x}$.
b) Solve $\left(D^{2}+3 D+2\right) y=2 \cos (2 x+3)+x \cos x$.
3. a) Find the maximum and minimum values of the function $f(x)=x^{5}-3 x^{4}+5$.
b) If $\mathrm{u}=\frac{y z}{x}, \mathrm{v}=\frac{x z}{y}, \mathrm{w}=\frac{x y}{z}$ find $\frac{\partial(u, v, w)}{\partial(x, y, z)}$.
4. a) Trace the curve $9 a y^{2}=x(x-3 a)^{2}$.
b) Trace the curve $\mathrm{x}=\mathrm{a}(\theta+\sin \theta), \mathrm{y}=\mathrm{a}(1-\cos \theta)$.
5. a) Find the surface area of the solid generated by revolving the arc of the parabola $x^{2}=12 y$, bounded by its latus rectum about y -axis.
b) Find the perimeter of the loop of the curve $3 a y^{2}=x(x-a)^{2}$.
6. a) Evaluate $\int_{0}^{1} \int_{x}^{\sqrt{x}} x^{2} y^{2}(x+y) d y d x$.
b) By changing the order of integration, evaluate $\int_{0}^{1} \int_{1}^{2-x} x y d x d y$.
7. a) Find the directional derivative of the function $\mathrm{f}=x^{2}-y^{2}+2 z^{2}$ at the point $\mathrm{P}=(1,2,3)$ in the direction of the line PQ where $\mathrm{Q}=(5,0,4)$.
b) Prove that $\operatorname{grad}(\bar{a} \cdot \bar{b})=(\bar{b} \cdot \nabla) \bar{a}+(\bar{a} \cdot \nabla) \bar{b}+\bar{b} \times c u r l \bar{a}+\bar{a} \times c u r l \bar{b}$.
8. a) Find the work done by $\bar{F}=(2 x-y-z) \bar{i}+(x+y+z) \bar{j}+(3 x-2 y-5 z) \bar{k}$ along a curve C in the xy - plane given by $\mathrm{x}^{2}+\mathrm{y}^{2}=9, \mathrm{z}=0$.
b) Use Gauss divergence theorem to evaluate $\iint_{S}\left(y z^{2} \bar{i}+z x^{2} \bar{j}+2 z^{2} \bar{k}\right) \cdot d s$, where S is the closed surface bounded by the xy - plane and the upper half of the sphere $x^{2}+y^{2}+z^{2}=a^{2}$ above this plane.
|"|"'||"||"'|||| WWW. manaresulıts.Co.in
