

I B. Tech I Semester Supplementary Examinations, May/June - 2019 MATHEMATICS-I

(Com. to All branches)

Ti	me:	3 hours Max. Marl	ks: 75
		Answer any FIVE Questions All Questions carry Equal Marks	
1.	a)	Solve $x \frac{dy}{dx} + y = x^3 y^6$.	(8M)
	b)	Suppose that an object is heated to 300^{0} F and allowed to cool in a room whose air temperature is 80^{0} F, if after 10 minutes the temperature of the object is 250^{0} F, what will be its temperature after 20 minutes.	(7M)
2.	a)	Solve $(D^3 - 4D + 13) y = e^{2x}$.	(8M)
	b)	Solve $(D^2 + 3D + 2) y = 2\cos(2x + 3) + x\cos x$.	(7M)
3.	a)	Find the maximum and minimum values of the function $f(x) = x^5 - 3x^4 + 5$.	(8M)
	b)	If $u = \frac{yz}{x}$, $v = \frac{xz}{y}$, $w = \frac{xy}{z}$ find $\frac{\partial(u, v, w)}{\partial(x, y, z)}$.	(7M)
4.	a)	Trace the curve $9ay^2 = x(x - 3a)^2$.	(8M)
	b)	Trace the curve $x = a (\theta + \sin \theta)$, $y = a (1 - \cos \theta)$.	(7M)
5.	a)	Find the surface area of the solid generated by revolving the arc of the parabola $x^2 = 12y$, bounded by its latus rectum about y-axis.	(8M)
	b)	Find the perimeter of the loop of the curve $3ay^2 = x(x - a)^2$.	(7M)
6.	a)	Evaluate $\int_{0}^{1} \int_{x}^{\sqrt{x}} x^2 y^2 (x+y) dy dx.$	(8M)
	b)	By changing the order of integration, evaluate $\int_{0}^{1} \int_{1}^{2-x} xy dx dy$.	(7M)
7.	a)	Find the directional derivative of the function $f = x^2 - y^2 + 2z^2$ at the point P=(1,2,3) in the direction of the line PQ where Q = (5,0,4).	(8M)
	b)	Prove that $grad(\overline{a}.\overline{b}) = (\overline{b}.\nabla)\overline{a} + (\overline{a}.\nabla)\overline{b} + \overline{b} \times curl\overline{a} + \overline{a} \times curl\overline{b}$.	(7M)
8.	a)	Find the work done by $\overline{F} = (2x - y - z)\overline{i} + (x + y + z)\overline{j} + (3x - 2y - 5z)\overline{k}$ along a curve C in the xy – plane given by $x^2 + y^2 = 9$, $z = 0$.	(8M)
	b)	Use Gauss divergence theorem to evaluate $\iint (yz^2\bar{i} + zx^2\bar{j} + 2z^2\bar{k}).ds$, where S is the	(7M)
		closed surface bounded by the xy - plane and the upper half of the sphere $x^2 + y^2 + z^2 = a^2$ above this plane.	

["]"]["]["][] www.manaresults.co.in