I B.Tech I Semester Supplementary Examinations May/June - 2016 MATHEMATICS-I

(Common to All Branches)

Time: 3 hours
Max. Marks: 75

Answer any FIVE Questions
 All Questions carry equal marks

* * * * *

1. (a) Solve $3 e^{x} \tan y d x+\left(1-e^{x}\right) \sec ^{2} y d y=0$.
(b) Find the orthogonal trajectories of $r^{2}=a \sin 2 \theta$.
2. (a) Solve $\left(D^{3}+2 D^{2}+D\right) y=x+\operatorname{Sin} 2 x$.
(b) Solve $\left(D^{3}-4 D^{2}-D+4\right) y=e^{3 x} \operatorname{Cos} 2 x$.
3. (a) Show that $\mathrm{U}=x^{2} e^{-y} \cosh z, \mathrm{~V}=x^{2} e^{-y} \sinh z, \mathrm{w}=x^{2}+y^{2}+z^{2}-x y-y z-z x$ are functionally dependent. If dependent find the relationship between them.
(b) Investigate the maxima and minima, if any, of the function $f(x)=x^{3} y^{2}(1-x-y)$.
4. Trace the curve $x^{3}+y^{3}+3 a x y=0$.
5. (a) Find the length of the arc of the curve $y=\log \left(\frac{e^{x}-1}{e^{x}+1}\right)$ from $x=1$ to $x=2$.
(b) Find the volume of the solid that results when the region enclosed by the curves $\mathrm{xy}=1$, x - axis and $\mathrm{x}=1$ rotated about x - axis.
6. (a) Evaluate $\int_{0}^{a} \int_{0}^{\sqrt{a^{2}-x^{2}}} \sqrt{a^{2}-x^{2}-y^{2}} d y d x$.
(b) By changing the order of integration, evaluate $\int_{0}^{3} \int_{1}^{\sqrt{4-y}}(x+y) d x d y$.
7. (a) Find the angle between the normal to the surface $\mathrm{x}^{2}=\mathrm{yz}$ at the points $(1,1,1)$ and $(2,4,1)$.
(b) Find the constants $\mathrm{a}, \mathrm{b}, \mathrm{c}$ so that the vector $\bar{f}=(x+2 y+a z) \bar{i}+(b x-3 y-z) \bar{j}+(4 x+c y+2 z) \bar{k}$ is irrotational. Also find ϕ (scalar potential).

Subject Code: R10102/R10

8. (a) Find the work done by $\bar{F}=(2 x-y-z) \bar{i}+(x+y+z) \bar{j}+(3 x-2 y-5 z) \bar{k}$ along a curve C in the $\mathrm{xy}-$ plane given by $\mathrm{x}^{2}+\mathrm{y}^{2}=9, \mathrm{z}=0$.
(b) Evaluate $\int_{V} \bar{F} d V$ when $\bar{F}=x \bar{i}+y \bar{j}+z \bar{k}$ and V is the region bounded by

$$
\mathrm{x}=0, \mathrm{y}=0, \mathrm{y}=6, \mathrm{z}=4, \mathrm{z}=x^{2}
$$

