

SET - 1

I B. Tech I Semester Supplementary Examinations, November - 2020 MATHEMATICS-I

(Com. to All branches)

Time:	3 hours Max. Mar	ks: 75
	Answer any FIVE Questions All Questions carry Equal Marks	
1. a)	Solve $3e^x \tan y dx + (1 - e^x) \sec^2 y dy = 0$.	(7M)
b)	Find the orthogonal trajectories of $r = a(1 - \cos\theta)$.	(8M)
2. a)	Solve $(D^2 - p^2)y = Sinh px$.	(7M)
b)	Solve $(D^2 - 4D + 4)y = x^2 Sinx + e^{2x} + 3$.	(8M)
3. a)	Prove that $u = \frac{x^2 - y^2}{x^2 + y^2}$, $v = \frac{2xy}{x^2 + y^2}$ are functionally dependent and find the relation between them	(7M)
b)	Find the minimum value of $x^2 + y^2 + z^2$ subject to the condition $\frac{1}{x} + \frac{1}{y} + \frac{1}{z}$.	(8M)
4. a)	Trace the curve $r = 2\cos\theta + 1$.	(7M)
b)	Trace the curve $y^2(a+x) = x^2(3a-x)$.	(8M)
5. a) b)	Prove that the length of the arc of a loop of the curve $9ay^2 = x (x - 3a)^2$ is $4\sqrt{3}a$. Find the area of the surface generated by revolving the loop of the curve $9y^2 = x(x - 3)^2$ about the x-axis	(7M) (8M)
6. a)	By changing the order of integration, evaluate $\int_{0}^{a} \int_{0}^{\sqrt{a^2 - x^2}} \sqrt{a^2 - x^2 - y^2} dy dx.$	(7M)
b)	Evaluate $\iiint (x + y + z) dz dy dx$ where R is the region bounded by the planes x = 0,	(8M)
	x = 1, y=1, z = 0, z = 1.	
7. a)	Find the angle between the normals to the surface $2x^2 + 3y^2 = 5z$ at points (2,-2,4) and (-1,-1,1).	(7M)
b)	Prove that $\nabla^2 f(r) = \frac{d^2 f}{dr^2} + \frac{2}{r} \frac{df}{dr}$	(8M)
8.	Verify Green's theorem in plane for $\oint_c (x^2 - 2xy) dx + (x^2y + 3) dy$ where c is the	(15M)

boundary of the region defined by $y^2 = 8x$ and x = 2.

1 of 1

["]"]["]["][] www.manaresults.co.in