I B. Tech I Semester Supplementary Examinations, November - 2020 MATHEMATICS-I
 (Com. to All branches)

Answer any FIVE Questions
All Questions carry Equal Marks

1. a) Solve $3 e^{x} \tan y d x+\left(1-e^{x}\right) \sec ^{2} y d y=0$.
b) Find the orthogonal trajectories of $r=a(1-\cos \theta)$.
2. a) Solve $\left(D^{2}-p^{2}\right) y=\operatorname{Sinh} p x$.
b) Solve $\left(D^{2}-4 D+4\right) y=x^{2} \operatorname{Sin} x+e^{2 x}+3$.
3. a) Prove that $\mathrm{u}=\frac{x^{2}-y^{2}}{x^{2}+y^{2}}, \mathrm{v}=\frac{2 x y}{x^{2}+y^{2}}$ are functionally dependent and find the relation between them.
b) Find the minimum value of $x^{2}+y^{2}+z^{2}$ subject to the condition $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}$.
4. a) Trace the curve $\mathrm{r}=2 \cos \theta+1$.
b) Trace the curve $y^{2}(a+x)=x^{2}(3 a-x)$.
5. a) Prove that the length of the arc of a loop of the curve $9 a y^{2}=x(x-3 a)^{2}$ is $4 \sqrt{3} a$.
b) Find the area of the surface generated by revolving the loop of the curve $9 y^{2}=x(x-3)^{2}$ about the x-axis.
6. a) By changing the order of integration, evaluate $\int_{0}^{a \sqrt{a^{2}-x^{2}}} \int_{0}^{2} \sqrt{a^{2}-x^{2}} d y d x$.
b) Evaluate $\iiint_{R}(x+y+z) d z d y d x$ where R is the region bounded by the planes $\mathrm{x}=0$, $\mathrm{x}=1, \mathrm{y}=1, \mathrm{z}=0, \mathrm{z}=1$.
7. a) Find the angle between the normals to the surface $2 x^{2}+3 y^{2}=5 z$ at points $(2,-2,4)$ and ($-1,-1,1$).
b) Prove that $\nabla^{2} \mathrm{f}(\mathrm{r})=\frac{\mathrm{d}^{2} \mathrm{f}}{\mathrm{dr}^{2}}+\frac{2}{\mathrm{r}} \frac{\mathrm{df}}{\mathrm{dr}}$
8. Verify Green's theorem in plane for $\oint_{c}\left(x^{2}-2 x y\right) d x+\left(x^{2} y+3\right) d y$ where c is the boundary of the region defined by $y^{2}=8 x$ and $x=2$.

1 of 1

