I B.Tech I Semester Supplementary Examinations December - 2016 MATHEMATICS-I

(Common to All Branches)

Time: 3 hours
Max. Marks: 75

Answer any FIVE Questions
 All Questions carry equal marks

$* * * * *$

1. (a) Solve $z^{\prime}+\frac{z}{x} \log z=\frac{z}{x}(\log z)^{2}$.
(b) Find the orthogonal trajectories of the family of curves $r=\frac{2 a}{1+\cos \theta}$
2. (a) Solve $\left(D^{2}+4 D+5\right) y=e^{-2 x}(1+\cos x)$.
(b) Solve $\left(D^{2}+3 D+2\right) y=x$.
3. (a) If $u=\frac{2 y z}{x}, v=\frac{3 x z}{y}, w=\frac{4 x y}{z}$. Calculate $\frac{\partial(x, y, z)}{\partial(u, v, w)}$.
(b) Examine the function $\mathrm{x}^{3}+\mathrm{y}^{3}-3 \mathrm{axy}$ for maxima \& minima.
4. Trace the curve $y^{2}(a-x)=x^{3}, a>0$.
5. (a) Find the area of the surface generated by revolving the curve $y=x^{2}$ included between $x=0$ and $x=\frac{6}{5}$ about y-axis.
(b) Find the volume of solid generated by revolving the plane area bounded by $y^{2}=4 x$ and $x=4$ about $x=4$.
6. (a) Evaluate $\int_{0}^{1} \int_{0}^{1-x} e^{\frac{y}{x+y}} d y d x$.
(b) Evaluate $\int_{R} x y d x d y$ where R is the region bounded by the parabola $x^{2}=4 y$ and $y^{2}=a x$.
7. (a) Find the directional derivative of $x y+y z+z x$ in the direction of $i+2 j+2 k$ at $(1,2,0)$
(b) Find the constants a and b so that $(2 x y+3 y z) i+\left(x^{2}+a x z-4 z^{2}\right) j+(3 x y+2 b y z) k$ is irrotational.
8. Verify Green's theorem for $\oint_{C}\left[\left(2 x-y^{3}\right) d x-x y d y\right]$ where c is the boundary of the region enclosed by $x^{2}+y^{2}=1$ and $x^{2}+y^{2}=9$.
