Subject Code: R10102/R10

Set No - 1

[8+7]

[8+7]

[15]

[8+7]

[15]

Max. Marks: 75

I B.Tech I Semester Supplementary Examinations December - 2016 MATHEMATICS-I

(Common to All Branches)

Time: 3 hours

Answer any FIVE Questions All Questions carry equal marks

* * * * *

- 1. (a) Solve $z' + \frac{z}{x} \log z = \frac{z}{x} (\log z)^2$.
 - (b) Find the orthogonal trajectories of the family of curves $r = \frac{2a}{1 + \cos\theta}$
- 2. (a) Solve $(D^2 + 4D + 5)y = e^{-2x}(1 + \cos x)$. (b) Solve $(D^2 + 3D + 2)y = x$.
- 3. (a) If $u = \frac{2yz}{x}, v = \frac{3xz}{y}, w = \frac{4xy}{z}$. Calculate $\frac{\partial(x, y, z)}{\partial(u, v, w)}$.
 - (b) Examine the function $x^3 + y^3 3axy$ for maxima & minima.

4. Trace the curve
$$y^2(a-x) = x^3, a > 0.$$
 [8+7]

- 5. (a) Find the area of the surface generated by revolving the curve $y = x^2$ included between x=0 and $x=\frac{6}{5}$ about y-axis.
 - (b) Find the volume of solid generated by revolving the plane area bounded by $y^2 = 4x$ and x = 4 about x = 4.
- [8+7] 6. (a) Evaluate $\int_{0}^{1} \int_{0}^{1-x} e^{\frac{y}{x+y}} dy dx.$ (b) Evaluate $\int_{R} xy dx dy$ where R is the region bounded by the parabola $x^{2} = 4y$ and $y^{2} = ax.$ [8+7]
- 7. (a) Find the directional derivative of xy + yz + zx in the direction of i + 2j + 2k at (1, 2, 0)
 - (b) Find the constants a and b so that $(2xy+3yz)i+(x^2+axz-4z^2)j+(3xy+2byz)k$ is irrotational.
- 8. Verify Green's theorem for $\oint_C [(2x y^3)dx xydy]$ where c is the boundary of the region enclosed by $x^2 + y^2 = 1$ and $x^2 + y^2 = 9$.

WWW.MANARESULTS.CO.IN

1"1""11"11"